Skip to main content
Log in

Prediction of heats of sublimation of energetic compounds using their molecular structures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A simple approach is presented to predict the heats of sublimation of energetic compounds including polynitro arenes, polynitro heteroarenes, acyclic and cyclic nitramines, nitrate esters, nitroaliphatics, cyclic and acyclic peroxides as well as nitrogen-rich compounds. This model is based on molecular masses and two correcting functions that depend on intra- and intermolecular interactions. In contrast to other predictive methods, such as quantum mechanical calculations, the present approach can be easily applied for energetic compounds containing complex molecular structure, without using computer codes. The predicted results of the model have been compared with experimental data of 213 different energetic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Δsub H :

Heat of sublimation (kJ mol−1)

F attract :

Correcting function due to intermolecular attractions

F repul :

Correcting function due to intermolecular repulsions

M rev :

Revised molecular mass (g mol−1)

References

  1. Keshavarz MH. Approximate prediction of melting point of nitramines, nitrate esters, nitrate salts and nitroaliphatics energetic compounds. J Hazard Mater. 2006;138(3):448–51. doi:10.1016/j.jhazmat.2006.05.097.

    Article  CAS  Google Scholar 

  2. Keshavarz MH, Pouretedal HR. New approach for predicting melting point of carbocyclic nitroaromatic compounds. J Hazard Mater. 2007;148(3):592–8. doi:10.1016/j.jhazmat.2007.03.014.

    Article  CAS  Google Scholar 

  3. Keshavarz MH. New method for predicting melting points of polynitro arene and polynitro heteroarene compounds. J Hazard Mater. 2009;171(1):786–96. doi:10.1016/j.jhazmat.2009.06.077.

    Article  CAS  Google Scholar 

  4. Keshavarz MH, Gharagheizi F, Pouretedal HR. Improved reliable approach to predict melting points of energetic compounds. Fluid Phase Equilib. 2011;308(1):114–28. doi:10.1016/j.fluid.2011.06.028.

    Article  CAS  Google Scholar 

  5. Hamadanian Khozani M, Keshavarz MH, Nazari B, Mohebbi M. Simple approach for prediction of melting points of organic molecules containing hazardous peroxide bonds. J Iran Chem Soc. 2014;. doi:10.1007/s13738-014-0516-5.

    Google Scholar 

  6. Keshavarz MH. Predicting heats of fusion of nitramines. Indian J Eng Mater Sci. 2007;14(5):386–90.

    CAS  Google Scholar 

  7. Keshavarz MH. A simple correlation for predicting heats of fusion of nitroaromatic carbocyclic energetic compounds. J Hazard Mater. 2008;150(2):387–93. doi:10.1016/j.jhazmat.2007.04.115.

    Article  CAS  Google Scholar 

  8. Keshavarz MH. Prediction of enthalpy of fusion of non-aromatic energetic compounds containing nitramine, nitrate and nitro functional groups. Propellants Explos Pyrotech. 2011;36(1):42–7. doi:10.1002/prep.200900113.

    CAS  Google Scholar 

  9. Mosaei Oskoei Y, Keshavarz MH. Improved method for reliable predicting enthalpy of fusion of energetic compounds. Fluid Phase Equilib. 2012;326:1–14. doi:10.1016/j.fluid.2012.04.020.

    Article  CAS  Google Scholar 

  10. Keshavarz MH, Pouretedal HR. A new simple approach to predict entropy of fusion of nitroaromatic compounds. Fluid Phase Equilib. 2010;298(1):24–32. doi:10.1016/j.fluid.2010.06.024.

    Article  CAS  Google Scholar 

  11. Keshavarz MH, Zakinejad S, Esmailpour K. An improved simple method for prediction of entropy of fusion of energetic compounds. Fluid Phase Equilib. 2013;340:52–62.

    Article  CAS  Google Scholar 

  12. Foltz M. Aging of pentaerythritol tetranitrate (PETN), LLNL-TR-415057. Livermore: Lawrence Livermore National Laboratory; 2009.

    Book  Google Scholar 

  13. Bhattacharia SK, Maiti A, Gee RH, Weeks BL. Sublimation properties of pentaerythritol tetranitrate single crystals doped with its homologs. Propellants Explos Pyrotech. 2012;37(5):563–8. doi:10.1002/prep.201100114.

    Article  CAS  Google Scholar 

  14. Hikal WM, Weeks BL. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry. Talanta. 2014;125:24–8.

    Article  CAS  Google Scholar 

  15. Bhattacharia S. Kinetics of energetic materials: investigation of sublimation and decomposition. Texas: Texas Tech University; 2013.

    Google Scholar 

  16. Poling BE, Prausnitz JM, John Paul OC, Reid RC. The properties of gases and liquids. 5th ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  17. Fried LE, Howard WM, Souers PC. CHEETAH 2.0 user’s manual (LLNL UCRL-MA-117541 Rev. 5). Livermore, CA: Lawrence Livermore National Laboratory; 1998.

  18. Mader CL. Numerical modeling of explosives and propellants. 3rd ed. Boca Raton: Taylor and Francis Group; 2008.

    Google Scholar 

  19. Muthurajan H, Sivabalan R, Talawar MB, Asthana SN. Computer simulation for prediction of performance and thermodynamic parameters of high energy materials. J Hazard Mater. 2004;112(1):17–33.

    Article  CAS  Google Scholar 

  20. Keshavarz MH, Motamedoshariati H, Moghayadnia R, Nazari HR, Azarniamehraban J. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I. J Hazard Mater. 2009;172(2):1218–28.

    Article  CAS  Google Scholar 

  21. Atkins PW, De Paula J. Physical chemistry. 9th ed. Oxford: Oxford University Press; 2010.

    Google Scholar 

  22. Bondi A. Heat of sublimation of molecular crystals: a catalog of molecular structure increments. J Chem Eng Data. 1963;8(3):371–81. doi:10.1021/je60018a027.

    Article  CAS  Google Scholar 

  23. Arnautova EA, Zakharova MV, Pivina TS, Smolenskii EA, Sukhachev DV, Shcherbukhin VV. Methods for calculating the enthalpies of sublimation of organic molecular crystals. Russ Chem Bull. 1996;45(12):2723–32.

    Article  Google Scholar 

  24. Politzer P, Murray JS, Edward Grice M, Desalvo M, Miller E. Calculation of heats of sublimation and solid phase heats of formation. Mol Phys. 1997;91(5):923–8.

    Article  CAS  Google Scholar 

  25. Rice BM, Pai SV, Hare J. Predicting heats of formation of energetic materials using quantum mechanical calculations. Combust Flame. 1999;118(3):445–58.

    Article  CAS  Google Scholar 

  26. Byrd EF, Rice BM. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J Phys Chem A. 2006;110(3):1005–13.

    Article  CAS  Google Scholar 

  27. Hu A, Larade B, Dudiy S, Abou-Rachid H, Lussier L-S, Guo H. Theoretical prediction of heats of sublimation of energetic materials using pseudo-atomic orbital density functional theory calculations. Propellants Explos Pyrotech. 2007;32(4):331–7.

    Article  CAS  Google Scholar 

  28. Ghosh MK, Cho SG, Choi CH. A priori prediction of heats of vaporization and sublimation by EFP2-MD. J Phys Chem B. 2014;118:4876–82.

    Article  CAS  Google Scholar 

  29. Salahinejad M, Le TC, Winkler DA. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds. J Chem Inf Model. 2013;53(1):223–9.

    Article  CAS  Google Scholar 

  30. Gharagheizi F, Sattari M, Tirandazi B. Prediction of crystal lattice energy using enthalpy of sublimation: a group contribution-based model. Ind Eng Chem Res. 2011;50:2482–6.

    Article  CAS  Google Scholar 

  31. Zeman S, Krupka M. Some predictions of the heats of fusion, heats of sublimation and lattice energies of energetic materials. HanNeng CaiLiao. 2002;10:27–33.

    CAS  Google Scholar 

  32. Keshavarz MH. Prediction of heats of sublimation of nitroaromatic compounds via their molecular structure. J Hazard Mater. 2008;151(2):499–506.

    Article  CAS  Google Scholar 

  33. Keshavarz MH, Yousefi MH. Heats of sublimation of nitramines based on simple parameters. J Hazard Mater. 2008;152(3):929–33.

    Article  CAS  Google Scholar 

  34. Keshavarz MH. Improved prediction of heats of sublimation of energetic compounds using their molecular structure. J Hazard Mater. 2010;177(1):648–59.

    Article  CAS  Google Scholar 

  35. Linstrom PJ, Mallard WG. NIST Chemistry WebBook. NIST Standard Reference Database Number 69. http://webbook.nist.gov (2014).

  36. Acree W, Chickos JS. Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2010. J Phys Chem Ref Data. 2010;39(4):1–942. doi:10.1063/1.3309507.

    Article  Google Scholar 

  37. Palm WJ III. Introduction to MATLAB for engineers. 3rd ed. New York: McGraw-Hill; 2011.

    Google Scholar 

  38. Sikder AK, Maddala G, Agrawal JP, Singh H. Important aspects of behaviour of organic energetic compounds: a review. J Hazard Mater. 2001;A84:1–26. doi:10.1016/S0304-3894(01)00178-9.

    Google Scholar 

  39. Keshavarz MH. A new general correlation for predicting impact sensitivity of energetic compounds. Propellants Explos Pyrotech. 2013;38(6):754–60.

    Article  CAS  Google Scholar 

  40. Keshavarz MH. Important aspects of sensitivity of energetic compounds: a simple novel approach to predict electric spark sensitivity. In: Janssen TJ, editor. Explosive materials: classification, composition and properties. New York: Nova Science Publishers, Inc; 2011. p. 103–23.

    Google Scholar 

  41. Zohari N, Keshavarz MH, Seyedsadjadi SA. A novel method for risk assessment of electrostatic sensitivity of nitroaromatics through their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;115(1):93–100.

    Article  CAS  Google Scholar 

  42. Keshavarz MH, Motamedoshariati H, Pouretedal HR, Tehrani MK, Semnani A. Prediction of shock sensitivity of explosives based on small-scale gap test. J Hazard Mater. 2007;145(1):109–12.

    Article  CAS  Google Scholar 

  43. Agrawal JP. Recent trends in high-energy materials. Prog Energy Combust Sci. 1998;24(1):1–30. doi:10.1016/S0360-1285(97)00015-4.

    Article  CAS  Google Scholar 

  44. Keshavarz MH, Sadeghi H. A new approach to predict the condensed phase heat of formation in acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds. J Hazard Mater. 2009;171:140–6.

    Article  CAS  Google Scholar 

  45. Keshavarz MH, Moghadas MH, Kavosh Tehrani M. Relationship between the electrostatic sensitivity of nitramines and their molecular structure. Propellants Explos Pyrotech. 2009;34(2):136–41.

    Article  CAS  Google Scholar 

  46. Billo EJ. Excel for chemists: a comprehensive guide. 2nd ed. New York: Wiley; 2001.

    Book  Google Scholar 

  47. Willmott CJ, Matsuura K, Robeson SM. Ambiguities inherent in sums-of-squares-based error statistics. Atmos Environ. 2009;43(3):749–52.

    Article  CAS  Google Scholar 

  48. Makridakis S, Hibon M. Evaluating accuracy(or error) measures. Fontainebleau, France: INSEAD1995.

  49. Zeman S, Krupka M. New aspects of impact reactivity of polynitro compounds, part III. Impact sensitivity as a function of the imtermolecular interactions. Propellants Explos Pyrotech. 2003;28(6):301–7. doi:10.1002/prep.200300018.

    Article  CAS  Google Scholar 

  50. Cundall RB, Palmer TF, Wood CE. Vapour pressure measurements on some organic high explosives. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases. 1978;74:1339–45.

    Article  CAS  Google Scholar 

  51. Matyas R, Pachman J. Primary explosives. New York: Springer; 2013.

    Book  Google Scholar 

  52. Behrens R, Wiese-Smith D, Johnston L, Maharrey S. Evaluation of ingredients for the development of new insensitive munitions, SAND2004-5309. Albuquerque: Sandia National Laboratories; 2004.

    Google Scholar 

  53. Burks RM, Hage DS. Current trends in the detection of peroxide-based explosives. Anal Bioanal Chem. 2009;395(2):301–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Malek-Ashtar University of Technology (MUT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jafari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1370 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, M.H., Bashavard, B., Goshadro, A. et al. Prediction of heats of sublimation of energetic compounds using their molecular structures. J Therm Anal Calorim 120, 1941–1951 (2015). https://doi.org/10.1007/s10973-015-4543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4543-y

Keywords

Navigation