Skip to main content
Log in

The effect of heavy cold plastic deformation on the non-isothermal kinetics and the precipitation sequence of metastable phases in an Al–Mg–Si alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics and the precipitation sequence of metastable phases in an un-deformed and heavily deformed Al–Mg–Si alloy are investigated. The effect of plastic deformation, prior to annealing, is studied in terms of kinetic parameters variations during the precipitation reaction. Kissinger–Akahira–Sunose isoconversional method was applied to DSC data obtained for different constant heating rates. The results show a strong effect of plastic deformation on the activation energy value, particularly for early stages of precipitation where dislocations play a significant role. The increase in the activation energy value with plastic deformation has been related to a modification of the precipitation sequence: The β′ phase formation was promoted at the expense of the β″ one. The growth exponent, n, decreases gradually as increasing temperature, attaining constant values of 1.6 and 1.2 for later stages of precipitation, respectively, for the un-deformed and cold-rolled samples. These two values are consistent with β″ and β′ precipitates specifications. Furthermore, the activation energy was discussed in terms of separate activation energies for nucleation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edwards GA, Stiller K, Dunlop GL, Couper MJ. The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 1998;46:3893–904.

    Article  CAS  Google Scholar 

  2. Miao WF, Laughlin DE. Effects of Cu Content and Preaging on Precipitation characteristics in aluminium alloy 6022. Metall Mater Trans A. 2000;31A:361–71.

    Article  CAS  Google Scholar 

  3. Esmaeili S, Wang X, Lloyd DJ, Poole WJ. On the precipitation-hardening behavior of the Al–Mg–Si– Cu alloy AA6111. Metall Mater Trans A. 2003;34A:751–63.

    CAS  Google Scholar 

  4. Chakrabarti DJ. Laughlin David E. Phase relations and precipitation in Al–Mg–Si alloys with Cu additions. Prog Mater Sci. 2004;49:389–410.

    Article  CAS  Google Scholar 

  5. Yassar RS, Field DP, Weiland H. The effect of pre-deformation on the β″ and β′ precipitates and the role of Q′ phase in an Al–Mg–Si alloy AA6022. Scripta Mater. 2005;53:299–303.

    Article  CAS  Google Scholar 

  6. Torsaeter M, Lefebvre W, Marioara CD, Andersen J, Walmsleya JC, Holmestada R. Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scripta Mater. 2011;64:817–20.

    Article  CAS  Google Scholar 

  7. Matsuda K, Ikeno S, Matsui H, Sato T, Terayama K, Uetani Y. Comparison of precipitates between excess Si–Type and balanced–Type Al–Mg–Si alloys during continuous heating. Metall Mater Trans A. 2005;36A:2007–12.

    Article  CAS  Google Scholar 

  8. Quainoo GK, Yannacopoulos S. The effect of cold work on the precipitation kinetics of AA6111 aluminum. J Mater Sci. 2004;39:6495–502.

    Article  CAS  Google Scholar 

  9. Birol Y. Pre-straining to improve the bake hardening response of a twin-roll cast Al–Mg–Si alloy. Scripta Mater. 2005;52:169–73.

    Article  CAS  Google Scholar 

  10. Matsuda T, Takaki Y, Sakurai T, Hirosawa S. Combined effect of pre-straining and pre-aging on bake-hardening behavior of an Al–0.6 mass% Mg–1.0 mass% Si Alloy. Mater Trans. 2010;51:325–32.

    Article  Google Scholar 

  11. Yassar RS, Field DP, Weiland H. The effect of cold deformation on the kinetics of the β″ precipitates in an Al–Mg–Si alloy. Metall Mater Trans A. 2005;36A:2059–65.

    Article  CAS  Google Scholar 

  12. Lee H, Lu W, Chan S. Effect of cold rolling on the aging kinetics of Al2O3/6061 Al composite by differential scanning calorimetric technique. Scr Metall. 1991;25:2165–70.

    Article  CAS  Google Scholar 

  13. Edwards GA, Dunlop GN, Couper MJ. In: Proceedings of the 4th International Conference on Aluminum Alloys; 1994. p. 620–627.

  14. Teichmann K, Marioara CD, Andersen SJ, Pedersen KO, Gulbandsen-Dahl S, Kolar M, Holmestad R, Marthinsen K. HRTEM study of the effect of deformation on the early precipitation behavior in an AA6060 Al–Mg–Si alloy. Phil Mag. 2011;91:3744–54.

    Article  CAS  Google Scholar 

  15. Shen CH. Pre-treatment to improve the bake hardening response in the naturally aged Al–Mg–Si alloy. J Mater Sci Technol. 2011;27:205–12.

    Article  CAS  Google Scholar 

  16. Long DC, Ohmori Y, Nakai K. Effects of cold rolling on the aging kinetics in Al–Mg–Si based commercial alloy. Mater Trans, JIM. 2000;41:690–5.

    Article  CAS  Google Scholar 

  17. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry: application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  19. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  20. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  21. Vončina M, Smolej A, Medved J, Mrvar P, Barbič R. Determination of precipitation sequence in Al-alloys using DSC method. Mater Geoenviron. 2010;57:295–304.

    Google Scholar 

  22. Vončina M, Kores S, Mrvar P, Medved J. Solidification and precipitation behavior in the AlSi9Cu3 allot with various Ce additions. Mater Technol. 2011;45:549–54.

    Google Scholar 

  23. Leyva-González KA, Deaquino-Lara R, Pourjafari D, Martínez-Sánchez R, Hernandez-Rodriguez MAL, García-Sánchez E. Calorimetry study of the precipitation in an Al7075-graphite composite fabricated by mechanical alloying and hot extrusion. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4581-5.

    Google Scholar 

  24. Barrena MI, Gómez de Salazar JM, Pascual L, Soria A. Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques. J Therm Anal Calorim. 2013;113:713–20.

    Article  CAS  Google Scholar 

  25. Donoso E, Zúñiga A, Diánez MJ, Criado JM. Nonisothermal calorimetric study of the precipitation processes in a Cu–1Co–0.5Ti alloy. J Therm Anal Calorim. 2010;100:975–80.

    Article  CAS  Google Scholar 

  26. Daoudi MI, Triki A, Redjaimia A. DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy. J Therm Anal Calorim. 2011;104:627–33.

    Article  CAS  Google Scholar 

  27. Birol Y. Optimization of homogenization for a low alloyed AlMgSi alloy. Mater Charact. 2013;80:69–75.

    Article  CAS  Google Scholar 

  28. Kolar M, Pedersen KO, Gulbrandsen-Dahl S, Teichmann K, Marthinsen K. Effect of pre-deformation on mechanical response of an artificially aged Al–Mg–Si alloy. Mater Trans. 2011;52:1356–62.

    Article  CAS  Google Scholar 

  29. Vedani M, Angella G, Bassani P, Ripamonti D, Tuissi A. DSC analysis of strengthening precipitates in ultrafine Al–Mg–Si alloys. J Therm Anal Calorim. 2007;87:277–84.

    Article  CAS  Google Scholar 

  30. Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng. 2001;A316(11–7):31.

    Google Scholar 

  31. Afify N, Gaber A, Mostafa MS, Abbady Gh. Influence of Si concentration on the precipitation in Al–1at%Mg alloy. J Alloys Compd. 2008;462:80–7.

    Article  CAS  Google Scholar 

  32. Christian JW. The theory of transformations in metals and alloys. Oxford: Pergamon Press; 2002.

    Google Scholar 

  33. Gaber A, Gaffar MA, Mostafa MS. Abo Zeid EF. Precipitation kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys. J Alloys Compd. 2007;429:167–75.

    Article  CAS  Google Scholar 

  34. Vasilyev AA, Kuzmin NL, Gruzdev AS. Study of the formation kinetics of metastable phases in quenched Al–Mg–Si alloy. Phys Solid State. 2011;53:1658–63.

    Article  CAS  Google Scholar 

  35. Daoudi MI, Triki A, Redjaimia A, Chihaoui Y. The determination of the activation energy varying with the precipitated fraction of β″ metastable phase in an Al–Si–Mg alloy using non-isothermal dilatometry. Thermochim Acta. 2014;577:5–10.

    Article  CAS  Google Scholar 

  36. Abid T, Boubertakh A, Hamamda S. Effect of pre-aging and maturing on the precipitation hardening of an Al–Mg–Si alloy. J Alloys Compd. 2010;490:166–9.

    Article  CAS  Google Scholar 

  37. Kempen ATW, Sommer F, Mittemeijer EJ. Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth. J Mater Sci. 2002;37:1321–32.

    Article  CAS  Google Scholar 

  38. Tsao CS, Chen CY, Jeng US, Kuo TY. Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys. Acta Mater. 2006;54:4621–31.

    Article  CAS  Google Scholar 

  39. Marioara CD, Andersen SJ, Jansen J, Zandbergen HW. Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Mater. 2001;49:321–8.

    Article  CAS  Google Scholar 

  40. Serizawa A, Hirosawa S, Sato T. Three-dimensional atom probe characterization of nanoclusters responsible for multistep aging behavior of an Al–Mg–Si alloy. Metall Mater Trans A. 2008;39A:243–51.

    Article  CAS  Google Scholar 

  41. Teichmann K, Marioara CD, Pedersen KO, Marthinsen K. The effect of simultaneous deformation and annealing on the precipitation behavior and mechanical properties of an Al–Mg–Si alloy. Mater Sci Eng, A. 2013;565:228.

    Article  CAS  Google Scholar 

  42. Liu F, Sommer F, Bos C, Mittemeijer EJ. Analysis of solid state phase transformation kinetics; models and recipes. Int Mater Rev. 2007;52:193–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoudi Mourad Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemour, H., Mourad Ibrahim, D. & Triki, A. The effect of heavy cold plastic deformation on the non-isothermal kinetics and the precipitation sequence of metastable phases in an Al–Mg–Si alloy. J Therm Anal Calorim 123, 19–26 (2016). https://doi.org/10.1007/s10973-015-4915-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4915-3

Keywords

Navigation