Skip to main content
Log in

Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effects of ageing treatment on phase transformations in Mg–Al alloy have been assessed. The techniques of scanning and transmission electron microscopy, microhardness and differential scanning calorimetric tests were used to characterize the materials obtained after application of artificial ageing. An ageing treatment at 175 °C causes the β-Mg17Al12 precipitation to become evenly distributed along the grain boundary and within the grain together with precipitation of the Al6Mn and the Τ-Mg32(Al,Zn)49 phases. The transformation processes are associated with increased hardness values. The hardness value increases with the ageing time and attains maximum value after 10 h of ageing time. The presence of the β-Mg17Al12 phase acts as an effective barrier to dislocation motion, thus improving the mechanical properties of the alloy. Analysing the DSC data it is found a shift of peak temperatures to higher temperatures with increasing heating rates, which suggests that the solid state reactions are thermally activated and kinetically controlled. The fraction and the rate of transformation, the transformation function and the kinetic parameters such as activation energy and frequency factor for the alloy in artificial ageing conditions were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behaviour of an AZ91 magnesium alloy at elevated temperatures. Mater Lett. 2005;59:1511–5.

    Article  CAS  Google Scholar 

  2. Ma YQ, Chen RS, Han EH. Keys to improving the strength and ductility of the AZ64 magnesium alloy. Mater Lett. 2007;61:2527–30.

    Article  CAS  Google Scholar 

  3. Ohno M, Mirkovic D, Schmid-Fetzer R. Liquidus and solidus temperatures of Mg-rich Mg–Al–Mn–Zn alloys. Acta Mater. 2006;54:3883–91.

    Article  CAS  Google Scholar 

  4. Guan YC, Zhou W. Calorimetric analysis of AZ91D magnesium alloy. Mater Lett. 2008;62:4494–6.

    Article  CAS  Google Scholar 

  5. Song G, Atrens A, Dargusch M, Zhang B. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corr Sci. 1998;40:1769–91.

    Article  CAS  Google Scholar 

  6. Bassani P, Gariboldi E, Tuissi A. Calorimetric analysis of AM60 magnesium alloy. J Therm Anal Calorim. 2005;80:739–47.

    Article  CAS  Google Scholar 

  7. Celotto S, Bastow TJ. Study of precipitation in aged binary Mg–Al and ternary Mg–Al–Zn alloys using Al-27 NMR spectroscopy. Acta Mater. 2001;49:41–51.

    Article  CAS  Google Scholar 

  8. Boumerzoug Z, Fatmi M. Effect of heat treatments on discontinuous precipitation kinetics in Al-30 wt% Zn alloy. Mater Charact. 2009;60:768–74.

    Article  CAS  Google Scholar 

  9. Barbagallo S, Laukli HI, Lohne O, Cerri E. Divorced eutectic in a HPDC magnesium–aluminum alloy. J Alloy Compd. 2004;378:226–32.

    Article  CAS  Google Scholar 

  10. Sevik H, Açikgöz S, Kurnaz SC. The effect of tin addition on the microstructure and mechanical properties of squeeze cast AM60 alloy. J Alloy Compd. 2010;508:110–4.

    Article  CAS  Google Scholar 

  11. Daoudi MI, Triki A, Redjaimia A. DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy. J Therm Anal Calorim. 2011;104:627–33.

    Article  CAS  Google Scholar 

  12. Petrovič DS, Pirnat M, Klančnik G, Mrvar P, Medved J. The effect of cooling rate on the solidification and microstructure evolution in duplex stainless steel. A DSC study. J Therm Anal Calorim. 2012;109:1185–91.

    Article  Google Scholar 

  13. Smetana B, Zlá S, Kroupa A, Žaludová M, Drápala J, Burkovič R, Petlák D. Phase transition temperatures of Sn–Zn–Al system and their comparison with calculated phase diagrams. J Therm Anal Calorim. 2012;110:369–78.

    Article  CAS  Google Scholar 

  14. Ohno M, Mirkovic D, Schmid-Fetzer R. Phase equilibria and solidification of Mg-rich Mg–Al–Zn alloys. Mater Sci Eng A. 2006;421:328–37.

    Article  Google Scholar 

  15. Nicolas M, Deschamps A. Precipitate microstructures and resulting properties of Al–Zn–Mg metal inert gas-weld heat-affected zones. Metall Mater Trans A. 2004;35:1437–48.

    Article  Google Scholar 

  16. Abis S, Massazza M, Menegucci P, Riontino G. Early ageing mechanisms in a high-copper AlCuMg alloy. Scripta Mater. 2001;45:685–91.

    Article  CAS  Google Scholar 

  17. Vassilev V, Aljihmani L, Paranova V. Phase equilibria in the GeSe2–SnTe system. J Therm Anal Calorim. 2004;76:727–35.

    Article  CAS  Google Scholar 

  18. Ghosh KS, Gao N. Determination of kinetic parameters from calorimetric study of solid state reactions in 7150 Al–Zn–Mg alloy. Trans Nonferrous Met Soc China. 2011;21:1199–209.

    Article  CAS  Google Scholar 

  19. Wang WX, Chen JJ, Jiang BL, Yuan S, Jie WQ. Deformed microstructure and the eutectic melting activity energy of AZ91D magnesium alloy by SIMA method. Sp Cast Nonferrous Alloys. 2005;25:205–7.

    Google Scholar 

  20. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  21. Malakhov DV, Abou Khatwa MK. Constructing a self-consistent integral baseline by using cubic splines. J Therm Anal Calorim. 2007;87:595–9.

    Article  CAS  Google Scholar 

  22. Smith GW, Baxter WJ, Mishra RK. Precipitation in 339 and 2124 aluminum: a caveat for calorimetry. J Mater Sci. 2000;35:3871–80.

    Article  CAS  Google Scholar 

  23. Banerjee S, Robi PS, Srinivasan A. Calorimetric study of precipitation kinetics of Al–Cu–Mg and Al–Cu–Mg–0.06 wt% Sn alloys. Met Mater Int. 2010;16:523–31.

    Article  CAS  Google Scholar 

  24. Gómez de Salazar JM, Barrena MI. Role of Al2O3 particulate reinforcements on precipitation in 7005 Al–matrix composites. Scripta Mater. 2001;44:2489–95.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MAT2010-20311 and Santander–UCM GR35/10-A projects for the financial support they provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Barrena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrena, M.I., Gómez de Salazar, J.M., Pascual, L. et al. Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques. J Therm Anal Calorim 113, 713–720 (2013). https://doi.org/10.1007/s10973-012-2791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2791-7

Keywords

Navigation