Skip to main content
Log in

Three-Dimensional Atom Probe Characterization of Nanoclusters Responsible for Multistep Aging Behavior of an Al-Mg-Si Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The characterization of nanoscale clusters (nanoclusters) was performed using differential scanning calorimetry (DSC) and a three-dimensional atom probe (3DAP), to clarify the complicated aging behavior of an Al-Mg-Si alloy. The DSC results conducted over the temperature range 223 to 473 K revealed that two types of nanoclusters, i.e., Cluster(1) and Cluster(2), were formed near room temperature (RT) and 373 K, respectively. In the present work, the quantitative estimation of atom maps of the 3DAP analysis revealed the difference in the growth mechanism and the composition distribution of the two types of nanoclusters. The distribution of both the size and Mg/Si ratio of Cluster(1) does not change during prolonged natural aging. On the other hand, Cluster(2) grows gradually with preaging time. The Mg/Si ratio of the larger-sized Cluster(2) approaches a constant value that is equal to that of the β″ phase. The difference in the two-step aging behavior can be explained by the different growth mechanisms and chemical compositions of the two nanoclusters. This means that only Cluster(2) can easily transform continuously into the β″ phase during the BH treatment, due to its size and compositional similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.W. Pashley, J.W. Rhodes, A. Sendorek: J. Inst. Met., 1966, vol. 94, pp. 41–49

    CAS  Google Scholar 

  2. I. Dutta, S.M. Allen: J. Mater. Sci. Lett., 1991, vol. 10, pp. 323–26

    Article  CAS  Google Scholar 

  3. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper: Acta Mater., 1998, vol. 46, pp. 3893–3904

    Article  CAS  Google Scholar 

  4. M. Murayama, K. Hono, M. Saga, M. Kikuchi: Mater. Sci. Eng., 1998, vol. A250, pp. 127–32

    CAS  Google Scholar 

  5. M. Murayama, K. Hono: Acta Mater., 1999, vol. 47, pp. 1537–48

    Article  CAS  Google Scholar 

  6. K. Yamada, T. Sato, A. Kamio: Mater. Sci. Forum, 2000, vols. 331–337, pp. 669–74

    Article  Google Scholar 

  7. K. Yamada, T. Sato, A. Kamio: J. Jpn. Inst. Light Met., 2001, vol. 51, pp. 215–21

    Article  CAS  Google Scholar 

  8. L. Zhen, S.B. Kang: Mater. Lett., 1998, vol. 37, pp. 349–53

    Article  CAS  Google Scholar 

  9. S. Esmaeili, X. Wang, D.J. Lloyd, W.J. Poole: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 751–63

    CAS  Google Scholar 

  10. Y. Birol: Mater. Sci. Eng., 2005, vol. A391, pp. 175–80

    CAS  Google Scholar 

  11. M. Takeda, F. Ohkubo, T. Shirai, K. Fukui: Mater. Sci. Forum, 1996, vols. 217–222, pp. 815–20

    Google Scholar 

  12. M. Takeda, F. Ohkubo, T. Shirai, K. Fukui: J. Mater. Sci., 1998, vol. 33, pp. 2385–90

    Article  CAS  Google Scholar 

  13. A. Serizawa, S. Hirosawa, T. Sato: Mater. Sci. Forum, 2006, vols. 519–521, pp. 245–50

    Google Scholar 

  14. M.K. Miller: Atom Probe Tomography—Analysis at the Atomic Level, Kluwer Academic/Plenum Publishers, New York, NY, 2000, pp. 153–54

    Google Scholar 

  15. L. Sagalowicz, G. Hug, D. Bechet, P. Sainfort, and G. Lapasset: Proc. 4th Int. Conf. on Aluminum Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., GIT, Atlanta, GA, 1994, vol. I, pp. 636–43.

  16. S.J. Andersen, C.D. Marioara, R. Vissers, A. Frøseth, H.W. Zandbergen: Acta Mater., 1998, vol. 46, pp. 3283–98

    Article  CAS  Google Scholar 

  17. S. Hirosawa, T. Sato: Mater. Sci. Forum, 2005, vols. 475–479, pp. 357–60

    Google Scholar 

  18. G. Sha, A. Cerezo: Acta Mater., 2005, vol. 53, pp. 907–17

    Article  CAS  Google Scholar 

  19. K. Hirano: J. Jpn. Inst. Light Met., 1979, vol. 29, pp. 249–62

    CAS  Google Scholar 

  20. G. Moreau, J.A. Cornet, D. Calais: J. Nucl. Mater., 1971, vol. 38, pp. 197–202

    Article  CAS  Google Scholar 

  21. D. Bergner, E. Cyrener: Neue Huette, 1973, vol. 18, pp. 356–61

    CAS  Google Scholar 

  22. K. Matsuda, H. Gamada, K. Fujii, Y. Uetani, T. Sato, A. Kamio, S. Ikeno: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1161–67

    Article  CAS  Google Scholar 

  23. Y. Komiya, S. Hirosawa, T. Sato: J. Jpn. Inst. Light Met., 2006, vol. 56, pp. 662–66

    Article  CAS  Google Scholar 

  24. G.W. Lorimer, R.B. Nicholson: The Mechanism of Phase Transformations in Crystalline Solids, The Institute of Metals, London, 1969, pp. 36–42

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the New Energy and Industrial Technology Development Organization (NEDO), the Japan Aluminum Association, and the 21st Century Center of Excellence Program (COE21) in Japan. The authors thank Professor W.J. Poole for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Serizawa.

Additional information

Manuscript submitted June 1, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serizawa, A., Hirosawa, S. & Sato, T. Three-Dimensional Atom Probe Characterization of Nanoclusters Responsible for Multistep Aging Behavior of an Al-Mg-Si Alloy. Metall Mater Trans A 39, 243–251 (2008). https://doi.org/10.1007/s11661-007-9438-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9438-5

Keywords

Navigation