Skip to main content
Log in

Thermal transformations in ultrafine plasmochemical zirconium dioxide powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The methods of thermal analysis and X-ray diffraction are used to investigate polymorphic transformations taking place under heating and cooling in nonstabilized ultrafine ZrO2 powders (ZrO2 UFP) synthesized in a plasmochemical process. It is found out that ZrO2 UFP is characterized by an increased content (up to 55 mass%) of tetragonal-phase particles, which is associated with the size effect of its stabilization. Heating of UFP within T = (25–700) °C, which is followed by the release of H2O, CH2O, and CO2, does not result in a change in its structural-phase state, while annealing within the temperature interval T = (700–1,000) °C gives rise to an increased growth of the size of t-ZrO2 crystallites and results in an elevated tetragonality of the crystal lattice (c/a). A complete t-ZrO2 → m-ZrO2 transition occurs as a result of heating the powder up to T = 1,300 °C. The effect of the dimensional factor on temperature characteristics of polymorphic m ↔ t transitions and the value of their temperature hysteresis is established. It is shown that the powder particle size exerts the most pronounced influence on the temperature-dependent position of the point of martensitic transformation M s. As this influence is increased, M s is shifted toward the region of higher temperatures. This is followed by a decreased temperature hysteresis of the m ↔ t martensitic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dedov NV, Dorda FA, Korobtsev VP, Kutyavin EM, Soloviev AI. A plasmochemical process for manufacture of ultra- and finely dispersed metal oxide powders and their applications [in Russian]. Novye Promyshlennye Tekhnologii. 1994;1(221):38–42.

    Google Scholar 

  2. Patent RU 2076069, C01G25/02; 1997.

  3. Larin VK, Kondakov VM, Malyi VA, Matykha VA, Dedov NV, Kutyavin EM, Stepanov IA, Ivanov YuF. A plasmochemical process for manufacture of ultrafine metal oxide powders and their promising applications. Izvestiya Vyschikh Uchebn Zaved Tsvetn Metal. 2003;5:59–64 (in Russian).

    Google Scholar 

  4. Ivanov YuF, Dedov NV. Diffraction analysis of nanometric zirconia powders. Fizika Khimiya Obrabotki Materialov. 1995;1:117–23 (in Russian).

    Google Scholar 

  5. Ivanov YuF, Tumanov YuN, Dedov NV, Khasanov OL. Structure and phase composition of nanostructured zirconia-base powder manufactured by plasmochemical synthesis. Fizika Khimiya Obrabotki Materialov. 2012;5:37–45 (in Russian).

    Google Scholar 

  6. Surzhikov AP, Frangulyan TS, Ghyngazov SA. A dilatometric study of the effect of pressing on the kinetics of compression of ultrafine zirconium dioxide powders under thermal annealing. Russ Phys J. 2012;55(4):345–52.

    Article  CAS  Google Scholar 

  7. Surzhikov AP, Frangulyan TS, Ghyngazov SA. Thermoanalysis of phase transformation and linear shrinkage kinetics of ceramics made from ultrafine plasmochemical ZrO2 (Y)–Al2O3 powders. J Therm Anal Calorim. 2014;115(2):1439–45.

    Article  CAS  Google Scholar 

  8. Chevalier J, Gremilland L, Vircar AV, Clarke DR. The tetragonal-monoclinic transformation in zirconia: lessons learned and future trend. J Am Ceram Soc. 2009;92(9):1901–20.

    Article  CAS  Google Scholar 

  9. Subbarao E, Maiti HS, Srivastava KK. Martensitic transformation in zirconia. Phys Status Solidi A. 1974;21:9–40.

    Article  CAS  Google Scholar 

  10. Bocanegra-Bernal MH, Diaz De La Torre S. Phase transformation in zirconium dioxide and related materials for high performance engineering ceramics. J Mater Sci. 2002;37:4947–71.

    Article  CAS  Google Scholar 

  11. Garvie RC. Stabilization of tetragonal structure in zirconia microcrystals. J Phys Chem. 1978;82(2):218–24.

    Article  CAS  Google Scholar 

  12. Garvie RC, Swain MV. Thermodynamics of the tetragonal to monoclinic phase transformation in constrained zirconia microcrystals. Part I: in the absence of an applied stress field. J Mater Sci. 1985;20(4):1193–200.

    Article  CAS  Google Scholar 

  13. Kim DJ. Effect of Ta2O5, Nb2O5 and HfO2 alloying on the transformability of Y2O3-stabilized tetragonal ZrO2. J Am Ceram Soc. 1990;73(1):115–20.

    Article  CAS  Google Scholar 

  14. Becher PF, Swain MV. Grain-size-dependent transformation behavior in polycrystalline tetragonal zirconia. J Am Ceram Soc. 1992;75(3):493–502.

    Article  CAS  Google Scholar 

  15. Heuer AH, Lange FF, Swain MV, Evans AG. Transformation toughening: an overview. J Am Ceram Soc. 1986;69(3):1–4.

    Article  Google Scholar 

  16. Moriya Y, Navrotsky A. High-temperature calorimetry of zirconia: heat capacity and thermodynamics of monoclinic-tetragonal phase transition. J Chem Thermodyn. 2006;38:211–23.

    Article  CAS  Google Scholar 

  17. Lega D, Antonini A, Ciccioli A, Brutti S, Lenzuni P. Low scan DSC study of monoclinic-tetragonal transition in zirconia. Thermochim Acta. 2011;524:18–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by The Ministry of Education and Science of the Russian Federation in part of the “Science” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghyngazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, A.P., Ghyngazov, S.A., Frangulyan, T.S. et al. Thermal transformations in ultrafine plasmochemical zirconium dioxide powders. J Therm Anal Calorim 119, 1603–1609 (2015). https://doi.org/10.1007/s10973-014-4318-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4318-x

Keywords

Navigation