Skip to main content

Advertisement

Log in

Effect of Heat Treatment on the Structure and Phase Composition of the Nanosized Powder Based on a ZrO2 Solid Solution

  • THEORY, MANUFACTURING TECHNOLOGY, AND PROPERTIES OF POWDERS AND FIBERS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The nanosized 90 mol.% ZrO2–2 mol.% Y2O3–8 mol.% CeO2 powder was produced by hydrothermal synthesis in an alkaline environment and heat-treated in the range 400–1300°C. The powder properties were examined by X-ray diffraction (XRD), SEM and TEM, petrography, and BET. According to the XRD data, a low-temperature metastable cubic ZrO2 (F-ZrO2) solid solution formed after hydrothermal synthesis. According to the petrography and electron microscopy data, TZrO2 began to form already in the hydrothermal synthesis process. The F-ZrO2 → T-ZrO2 phase transformation was completed in the range 700–850°C. Some T-ZrO2 particles were characterized by a twin substructure. The T-ZrO2 unit cell volume monotonically increased from 133.58 · 10–3 nm3 to 137.09 · 10–3 nm3 and the degree of tetragonality from 1.0033 to 1.0140. No M-ZrO2 was found to form. The powder specific surface area decreased from 94 to 2 m2/g in the heat treatment process. The sizes of primary powder particles (5–10 nm) remained almost unchanged in heat treatment up to 1150°C. The Vickers hardness of the ceramics produced from the powder treated at 850°C was 3.1 GPa and critical fracture toughness factor KIc was 8.4 MPa · m1/2. The preservation of the tetragonal structure (T-ZrO2), which is capable of the martensitic T-ZrO2 → M-ZrO2 transformation, and the strength characteristics determined open ways for microstructural design of smart materials, including shape memory ones, in the ZrO2–Y2O3–CeO2 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. R.S. Garvie, R.H.J. Hannink, and R.T. Pascoe, “Ceramic steel,” Nature, 205, 703–705 (1975).

    Article  Google Scholar 

  2. P.M. Kelly and L.R. Francis Rose, “The martensitic transformation in ceramics—its role in transformation toughening,” Prog. Mater. Sci., 47, 463–557 (2002).

    Article  CAS  Google Scholar 

  3. Z.G. Wei, R. Sandstrom, and S. Miyazaki, “Review shape-memory materials and hybrid composites for smart systems. Part I. Shape-memory materials,” J. Mater. Sci., 33, 3743–3762 (1998).

    Article  CAS  Google Scholar 

  4. Z. Du, X.M. Zeng, Q. Liu, A. Lai, Sh. Amini, A. Miserez, Ch.A. Schuh, and Ch.L. Gan, “Size effects and shape memory properties in ZrO2 ceramic micro- and nano-pillars,” Scr. Mater., 101, 40–43 (2015).

    Article  CAS  Google Scholar 

  5. M.V. Swain, “Shape memory behavior in partially stabilized zirconia ceramics,” Nature, 322, No. 17, 234–236 (1986).

    Article  CAS  Google Scholar 

  6. P.E. Reyes-Morel, J.-Sh. Cherg, and I-W. Chen, “Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals. II. Pseudoelasticity and shape memory effect,” J. Am. Ceram. Soc., 71, 648–657 (1988).

    Article  CAS  Google Scholar 

  7. M.A. Zaeema, N. Zhang, and M. Mamivand, “A review of computational modeling techniques in study and design of shape memory ceramics,” Comput. Mater. Sci., 160, 120–136 (2019).

    Article  Google Scholar 

  8. X.-J. Jin, “Martensitic transformation in zirconia containing ceramics and its applications,” Curr. Opin. Solid State Mater. Sci., 9, 313–318 (2005).

    Article  CAS  Google Scholar 

  9. Y.L. Zhang, X.J. Jin, Y.H. Rong, T.Y. Hsu, D.Y. Jiang, and J.L. Shi, “On the tm martensitic transformation in Ce–Y-TZP ceramics,” Acta Mater., 54, 1289–1295 (2006).

    Article  CAS  Google Scholar 

  10. A. Lai, Z.H. Du, C.L. Gan, and C.A. Schuh, “Shape memory and superelastic ceramics at small scales,” Science, 341, 1505–1508 (2013).

    Article  CAS  Google Scholar 

  11. X.M. Zeng, Z. Du, N. Tamura, Q. Liu, Ch.A. Schuh, and Ch.L. Gan, “In-situ studies on martensitic transformation and high-temperature shape memory in small volume zirconia,” Acta Mater., 134, 257–266 (2017).

    Article  CAS  Google Scholar 

  12. N. Zhang and M.A. Zaeem, “Nanoscale self-healing mechanisms in shape memory ceramics,” Comput. Mater., 2019. https://doi.org/10.1038/s41524-019-0194-z.

  13. H.A. Rauch, Y. Chen, K. An, and H.Z. Yu, “In situ investigation of stress-induced martensitic transformation in granular shape memory ceramic packings,” Acta Mater., 168, 362–375 (2019). https://doi.org/10.1016/j.actamat.2019.02.028.

    Article  CAS  Google Scholar 

  14. Z. Du, X.M. Zeng, Q. Liu, Ch.A. Schuh, and Ch.L. Gan, "Superelasticity in micro-scale shape memory ceramic particles," Acta Mater., 123, 255–263 (2017).

    Article  CAS  Google Scholar 

  15. E.L. Pang, C.A. Candler, and C.A. Schuh, “Reduced cracking in polycrystalline ZrO2–CeO2 shape-memory ceramics by meeting the cofactor conditions,” Acta Mater., 177, 230–239 (2019). https://doi.org/10.1016/j.actamat.2019.07.028.

    Article  CAS  Google Scholar 

  16. E.V. Dudnik, A.V. Shevchenko, A.K. Ruban, V.P. Red’ko, and L.M. Lopato, “Microstructural design of ZrO2–Y2O3–CeO2–Al2O3 materials,” Powder Metall. Met. Ceram., 49, No. 9–10, 528–536 (2011).

    Article  CAS  Google Scholar 

  17. E.V. Dudnik, S.N. Lakiza, Ya.S. Tishchenko, A.K. Ruban, V.P. Red’ko, A.V. Shevchenko, and L.M. Lopato, “Phase diagrams of refractory oxide systems and microstructural design of materials,” Powder Metall. Met. Ceram., 53, No. 5–6, 303–311 (2014).

    Article  CAS  Google Scholar 

  18. I.O. Marek, O.K. Ruban, V.P. Redko, M.I. Danilenko, S.A. Korniy, and O.V. Dudnik, “Physicochemical properties of hydrothermal nanocrystalline ZrO2–Y2O3–CeO2 powders,” Powder Metall. Met. Ceram., 58, No. 3–4, 125–132 (2019).

    Article  CAS  Google Scholar 

  19. V.A. Perepelitsyn, Fundamentals of Technical Mineralogy and Petrography [in Russian], Nedra, Moscow (1987), p. 255.

    Google Scholar 

  20. J. Res, J.-D. Kamminga, and L.J. Seijbel, “Diffraction line broadening analysis if broadening is caused by both dislocations and limited crystallite size,” Natl. Inst. Stand. Technol., 109, 65–74 (2004). http://dx.doi.10.6028/jres.109.005.

  21. G.Ya. Akimov, G.A. Marinin, and V.Yu. Kameneva, “Evolution of the phase composition and mechanical properties of ZrO2 + 4 mol.% Y2O3 ceramics,” Fiz. Tverd. Tela, 46, 250–252 (2004).

    Google Scholar 

  22. V.V. Panichkina and I.V. Uvarova, Methods for Controlling the Particle Size and Specific Surface Area of Metallic Powders [in Russian], Naukova Dumka, Kyiv (1973), p. 168.

    Google Scholar 

  23. T. Sakuma, “Phase transformation and microstructure of partially-stabilized zirconia,” Trans. Jpn. Inst. Met., 29, 879–893 (1988).

    Article  CAS  Google Scholar 

  24. R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, “Transformation toughening in zirconia-containing ceramics,” J. Am. Ceram. Soc., 83, No. 3, 461–487 (2000).

    Article  CAS  Google Scholar 

  25. S.V. Belov, M.A. Borik, M.A. Vishniakova, Yu.K. Danileiko, and A.V. Kulebiakin, “Study of the structural and physicochemical properties of nanosized zirconium dioxide crystals for developing innovation electrosurgical tools,” Dokl. RAN, 450, No. 1, 32–35 (2013).

    Google Scholar 

  26. B.K. Vainshtein, Modern Crystallography [in Russian], Nauka, Moscow (1979), Vol. 1, p. 384.

    Google Scholar 

  27. B.A. Galanov and O.N. Grigoriev, “Analytical model of indentation for brittle materials,” Elektron. Mikrosk. Prochn. Mater., No. 14, 4–42 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I.O. Marek.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 59, Nos. 1–2 (531), pp. 3–13, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudnik, O., Marek, I., Ruban, O. et al. Effect of Heat Treatment on the Structure and Phase Composition of the Nanosized Powder Based on a ZrO2 Solid Solution. Powder Metall Met Ceram 59, 1–8 (2020). https://doi.org/10.1007/s11106-020-00132-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-020-00132-x

Keywords

Navigation