Skip to main content
Log in

Phase Transformations of Zirconium Dioxide and Crystal Growth During Heat Treatment of the ZrO2(CeO2,Y2O3)–La0.85Y0.15Al11O18–Al2O3 System

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A compound material with a matrix based on zirconium dioxide stabilized with cerium and yttrium oxides, filled with layered particles of lanthanum hexaaluminate and reinforced with aluminum oxide nanofibers, was obtained. The values of the activation energy for the formation of ZrO2 polymorphic modifications, the size of the crystallites of the compound material matrix were determined; the phase formation and the crystallinity degree of the phases formed in the ZrO2(CeO2,Y2O3)–La0.85Y0.15Al11O18–Al2O3 system were studied in relation to the joint introduction of stabilizing additives and Al2O3 nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Pakhomov, N.A., Nauchnyye osnovy prigotovleniya katalizatorov: vvedeniye v teoriyu i praktiku (Scientific Basis for the Preparation of Catalysts: an Introduction to Theory and Practice), Novosibirsk: SB RAS, 2011.

  2. Khimiya i tekhnologiya redkikh i rasseyannykh elementov (Chemistry and Technology of Rare and Trace Elements), Bol’shakov, K.A., Ed., Moscow: VSh, 1976, vol. 2, p. 205.

  3. Ermolenko, I.N., Ul’yanova, T.M., Vityaz’ P.A., and Fedorova, I.L., Voloknistye vysokotemperaturnye keramicheskie materialy (Fibrous High-Temperature Ceramic Materials), Minsk: Nauka i tekhnika, 1991.

  4. Podzorova, L.I., Il’icheva, A.A., Pen’kova, O.I., Antonova, O.S., Baikin, A.S., and Sirotinkin, V.P., Inorg. Mater., 2021, vol. 57, no. 2, p. 192. https://doi.org/10.1134/S0020168521020102

    Article  CAS  Google Scholar 

  5. Naga, S.M., Elshaer, M., Awaad, M., and Amer, A.A., Mater. Chem. Phys., 2019, vol. 232, p. 23. https://doi.org/10.1016/j.matchemphys.2019.04.055

    Article  CAS  Google Scholar 

  6. Bugaeva, A.Yu., Loukhina, I.V., Filippov, V.N., and Dudkin, B.N., Russ. J. Gen Chem., 2017, vol. 87, no. 10, p. 2351. https://doi.org/10.1134/S1070363217100164

    Article  CAS  Google Scholar 

  7. Podzorova, L.I., Il’icheva, A.A., Kutuzova, V.E., Sirotinkin, V.P., Antonova, O.S., Baikin, A.S., Konovalov, A.A., and Pen’kova, O.I., Russ. J. Inorg. Chem., 2021, vol. 66, no. 8, p. 1169. https://doi.org/10.1134/S0036023621080222

    Article  CAS  Google Scholar 

  8. Yorov, Kh.E., Baranchikov, A.E., Kiskin, M.A., Sidorov, A.A., and Ivanov, V.K., Russ. J. Coord. Chem., 2022, vol. 48, p. 89. https://doi.org/10.1134/s1070328422020014

    Article  CAS  Google Scholar 

  9. Shuklina, A.I., Smirnov, A.V., Fedorov, B.A., and Almjasheva, O.V., Nanosystems: Phys. Chem. Math., 2020, vol. 11. N6, p. 729. https://doi.org/10.17586/2220-8054-2020-11-6-729-738

    Article  CAS  Google Scholar 

  10. Almjasheva, O.V. and Denisova, T.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, p. 1. https://doi.org/10.1134/S1070363217010017

    Article  CAS  Google Scholar 

  11. Almjasheva, O.V., Smirnov, A.V., Fedorov, B.A. Tomkovich, M.V., and Gusarov, V.V., Russ. J. Gen. Chem., 2014, vol. 84, no. 5, p. 804. https://doi.org/10.1134/S1070363214050028

    Article  CAS  Google Scholar 

  12. Kurapova, O.Y., Shugurov, S.M., Vasil’eva, E.A., Konakov, V.G., and Lopatin, S.I., J. Alloys Compd., 2019, vol. 776, p. 194. https://doi.org/10.1016/j.jallcom.2018.10.265

    Article  CAS  Google Scholar 

  13. Kul’met’eva, V.B., Porozova, S.E., Gilev, V.G., and Vokhmyanin, D.S., Refract. Ind. Ceram., 2019, vol. 59, no. 6, p. 599. https://doi.org/10.1007/s11148-019-00280-7

    Article  CAS  Google Scholar 

  14. Panova, T.I., Glushkova, V.B., and Nefedova, M.Yu., Glass Phys. Chem., 2005, vol. 31, no. 2, p. 240. https://doi.org/10.1007/s10720-005-0048-2

    Article  CAS  Google Scholar 

  15. Bakradze, M.M., Doronin, O.N., Artemenko, N.I., Stekhov, P.A., Marakhovskii, P.S., and Stolyarova, V.L., Russ. J. Inorg. Chem., 2021, vol. 66, no. 5, p. 789. https://doi.org/10.1134/S003602362105003X

    Article  CAS  Google Scholar 

  16. Abdullah, M., Ahmad, J., and Mehmood, M., Composites B, 2012, vol. 43, p. 1785. https://doi.org/10.1016/j.compositesb.2012.01.021

    Article  CAS  Google Scholar 

  17. Pfeifer, S., Demirci, P., Duran, R., and Stolpmann, H., J. Eur. Ceram. Soc., 2016, vol. 36, no. 3, p. 725. https://doi.org/10.1016/j.jeurceramsoc.2015.10.028

    Article  CAS  Google Scholar 

  18. Leonov, А.A., Materials Today: Proceedings, 2019, vol. 11, p. 66. https://doi.org/10.1016/j.matpr.2018.12.108

    Article  CAS  Google Scholar 

  19. Leonov, A.A., Abdul’menova, E.V., Kalashnikov, M.P., and Li, Ts., Vopr. Materialoved., 2020, vol. 4, no. 104, p. 132. https://doi.org/10.22349/1994-6716-2020-104-4-132-143

    Article  CAS  Google Scholar 

  20. Kern, F. and Gommeringer, A., J. Ceram. Sci. Technol., 2018, vol. 9, no. 1, p. 93. https://doi.org/10.4416/JCST2017-00046

    Article  Google Scholar 

  21. Fujii, T., Muragaki, H., Hatano, H., and Hirano, S., Ceram. Trans., 1991, vol. 22 (Ceram. Powder Sci. 4), p. 141.

    Google Scholar 

  22. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.

  23. Bugaeva, A.Yu., Loukhina, I.V., Dudkin, B.N., and, Beliy, V.A., Transactions Kola Sci. Centre. Chem. Mater., 2018, vol 2, no. 1, part 2, p. 551. https://doi.org/10.25702/KSC.2307-5252.2018.9.1.551-555

    Article  Google Scholar 

  24. Barrera-Solano, C. and Esquivias, L., J. Am. Ceram. Soc., 1999, vol. 82, no. 5, p.1318. https://doi.org/10.1111/J.1151-2916.1999.TB01914.X

    Article  CAS  Google Scholar 

  25. Dudkin, B.N., Bugaeva, A.Y., Zainullin, G.G., and Filippov, V.N., Refract. Indust. Ceram., 2004, vol. 45, no. 1, p. 31. https://doi.org/10.1023/B:REFR.0000023348.19718.73

    Article  CAS  Google Scholar 

  26. Dudkin, B.N. and Krivoshapkin, P.V., Colloid J., 2008, vol. 70, no. 1, p. 20. https://doi.org/10.1007/s10595-008-1004-3

    Article  CAS  Google Scholar 

  27. Dudkin, B.N., Bugaeva, A.Yu., and Zainullin, G.G., Konstruktsii iz Kompozitsionnykh Materialov, 2010, no. 1, p. 9.

    Google Scholar 

  28. Tokiy, N.V., Perekrestov, B.I., Savina, D.L., and Danilenko, I.A., Phys. Solid State, 2011, vol. 53, no. 9, p. 1827. https://doi.org/10.1134/S1063783411090290

    Article  CAS  Google Scholar 

  29. Kozik, V.V. and Borilo, L.N., Izv. Vuzov. Ser. Khim. Khim. Tekhnol., 2006, vol. 49, no. 9, p. 106.

    Google Scholar 

  30. Standard Method for Estimating Kinetic Parameters by Differential Scanning Calorimeter Using the Borchardt and Daniels Method, ASTM International. E 2041–01. 2001.

  31. Borik, M.A., Gerasimov, M.V., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Ryabochkina, P.A., Sidorova, N.V., and Tabachkova, N.Yu., Mater. Chem. Phys., 2019, vol. 232, p. 28. https://doi.org/10.1016/j.matchemphys.2019.04.047

    Article  CAS  Google Scholar 

  32. Aruna, S.T. and Rajam, K.S., Mater. Res. Bull., 2004, vol. 39, p. 157. https://doi.org/10.1016/j.materresbull.2003.10.005

    Article  CAS  Google Scholar 

  33. Scardi, P., and Leoni, M., Acta Crystallogr. A, 2001, vol. 57, p. 604. https://doi.org/10.1107/s0108767301008881

    Article  CAS  PubMed  Google Scholar 

  34. Kuchuk, I.S. and Al’myasheva, O.V., Nanosystems: Phys., Chem., Mathem., 2012, vol. 3, no. 3, p. 123.

    Google Scholar 

  35. Ghosh, S., Swaroop, S., Fielitz, P., Borchardt, G., and Chokshi, A.H., J. Eur. Ceram. Soc., 2011, vol. 31, p. 1027. https://doi.org/10.1016/j.jeurceramsoc.2010.12.027

    Article  CAS  Google Scholar 

  36. Sekushin, N.A., Kocheva, L.C., and Demin, V.A., Khim. Rast. Syr’ya, 1999, no. 1, p.59.

    Google Scholar 

  37. Tager, A.A., Fiziko-khimiya polimerov (PhysicoChemistry of Polymers), Moscow: Nauchnyi Mir, 2007.

  38. Moseenkov, S.I., Zavorin, A.V., Ishchenko, A.V., Serkova, A.N., Selyutin, A.G., and Kuznetsov, V.L., J. Struct. Chem., 2020, vol. 61, p. 628. https://doi.org/10.1134/S0022476620040174

    Article  CAS  Google Scholar 

  39. Tsetlin, M.B., Teplov, A.A., Belousov, S.I., Chvalun, S.N., Golovkova, E.A., Krasheninnikov, S.V., Golubev, E.K., Pichkur, E.B., Dmitryakov, P.V., and Buzin, A.I., Poverkhnost’. Rentgenovskiye, sinkhrotronnyye i Neyronnye Issledovaniya, 2018, no. 3, p. 83. https://doi.org/10.7868/S0207352818030137

    Article  Google Scholar 

  40. Nazarenko, O.B., Il’in, A.P., and Tikhonov, D.V., Elektricheskii vzryv provodnikov. polucheniye nanoporoshkov metallov i tugoplavkikh nemetallicheskikh soedinenii (Electrical Explosion of Conductors. Obtaining Nanopowders of Metals and Refractory Non-Metallic Compounds), Kishinev: Lambert Academic Publishing, 2012.

  41. Wendlandt, W.W., Thermal Methods of Analysis, 2nd ed., New York: Wiley, 1974.

  42. Kraus, W. and Nolze, G., J. Appl. Cryst., 1996, vol. 29, p. 301. https://doi.org/10.1107/S0021889895014920

    Article  CAS  Google Scholar 

  43. Belsky, A., Hellenbrandt, M., Karen, V.L., and Luksch, P., Acta Crystallogr. B, 2002, vol. 58, no. 3, p. 364. https://doi.org/10.1107/s0108768102006948

    Article  PubMed  Google Scholar 

  44. Egorov-Tismenko, Yu.K., Kristallografiya (Crystallography), Urusova, V.S., Ed., Moscow: KDU, 2005.

  45. Rietveld, H., J. Appl. Cryst., 1969, vol. 2, p. 65. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to E.M. Tropnikov (Institute of Geology of the Federal Research Center of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences) and A.A. Utkin (Pitirim Sorokin Syktyvkar State University) for taking electron micrographs of surfaces of samples on a scanning electron microscope and for their X-ray spectral analysis.

Funding

The work was financially supported within the framework of the scientific project of the Scientific and Educational Center (no. 122040100040-0) and research work (topic no. 1021051101544-1-1.4.3) using the equipment of the Center for Collective Use “Chemistry” of the Institute of Chemistry of the Komi Federal Research Center of the Scientific Center of the Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Bugaeva.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bugaeva, A.Y., Nazarova, L.Y., Belyi, V.A. et al. Phase Transformations of Zirconium Dioxide and Crystal Growth During Heat Treatment of the ZrO2(CeO2,Y2O3)–La0.85Y0.15Al11O18–Al2O3 System. Russ J Gen Chem 92, 1488–1497 (2022). https://doi.org/10.1134/S1070363222080175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222080175

Keywords:

Navigation