Skip to main content
Log in

Monte Carlo parametric modeling for predicting biomass calorific value

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Due to the nonlinear relationship between the calorific value and the elemental concentration of biomass, methods such as linear regression, widely used in the literature to model this relationship, produce models that fail to provide well-grounded results. In this study, a novel approach, based on Monte Carlo parametric modeling, for calculating the calorific value of biomass from measurements provided by elemental analysis, is presented. Olive husk, a biomass source widely used in the Mediterranean basin, was the subject under investigation. A comprehensive analysis of the thermal properties of olive husk was conducted. The elemental analysis, as well as the calorific value, the moisture content the sampling and the preparation of the examined biomass were performed using the appropriate CEN standards and procedures. Based on the Monte Carlo parametric modeling, the parameters of an exponential model linking the elemental analysis and the calorific value of olive husk were estimated. This study is anticipated to provide further insight to the discussion on models for predicting the calorific value of biomass, by introducing a novel mathematical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abu-Ashour J, Abu Qdais H, Al-Widyan M. Estimation of animal and olive solid wastes in Jordan and their potential as a supplementary energy source: An overview. Renew Sustain Energy Rev. 2010;14:2227–31.

    Article  CAS  Google Scholar 

  2. García-Maraver A, Zamorano M, Ramos-Ridao A, Díaz LF. Analysis of olive grove residual biomass potential for electric and thermal energy generation in Andalusia (Spain). Renew Sustain Energy Rev. 2012;16:745–51.

    Article  Google Scholar 

  3. Chouchene A, Jeguirim M, Khiari B, Zagrouba F, Trouvé G. Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration. Resour Conserv Recycl. 2010;54:271–7.

    Article  Google Scholar 

  4. Caputo AC, Scacchia F, Pelagagge PM. Disposal of by-products in olive oil industry: waste-to-energy solutions. Appl Therm Eng. 2003;23:197–214.

    Article  Google Scholar 

  5. Pattara C, Cappelletti GM, Cichelli A. Recovery and use of olive stones: commodity, environmental and economic assessment. Renew Sustain Energy Rev. 2010;14:1484–9.

    Article  CAS  Google Scholar 

  6. ISO 14961-1-2010, Solid biofuels - Fuel specifications and classes - Part 1: General.

  7. Fokaides PA, Polycarpou P. Exploitation of olive solid waste for energy purposes. In: Poullikkas A, editor. Renewable energy, economies, emerging technologies and global practices. New York: Nova Science Publishers, Inc.; 2013. p. 163–78.

    Google Scholar 

  8. Vargas-Moreno JM, Callejón-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B. A review of the mathematical models for predicting the heating value of biomass materials. Renew Sustain Energy Rev. 2012;16:3065–83.

    Article  CAS  Google Scholar 

  9. Warnatz J, Maas U, Dibble RW. Combustion, physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. 3rd ed. Berlin: Springer; 2002.

    Google Scholar 

  10. Arulampalam MS, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process. 2002;50:174–88.

    Article  Google Scholar 

  11. Dziejowski J, Białobrzewski I. Calorimetric studies of solid wastes, sewage sludge, wastewaters and their effects on soil biodegradation processes. J Therm Anal Calorim. 2011;104:161–8.

    Article  CAS  Google Scholar 

  12. Kök MV, Keskin C. Calorific value determination of coals by DTA and ASTM methods. Comparative study. J Therm Anal Calorim. 2001;64:1265–70.

    Article  Google Scholar 

  13. Liu Z, Fei B, Jiang Z, Cai Z, Yu Y, Liu X. A comparative study of thermal properties of sinocalamus affinis and moso bamboo. J Therm Anal Calorim. 2013;111:393–9.

    Article  CAS  Google Scholar 

  14. Cordeiro LG, El-Aouar ÂA, Araújo CVB. Energetic characterization of malt bagasse by calorimetry and thermal analysis. J Therm Anal Calorim. 2013;112:713–7.

    Article  CAS  Google Scholar 

  15. Sebestyén Z, Lezsovits F, Jakab E, Várhegyi G. Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples. J Therm Anal Calorim. 2012;110:1501–9.

    Article  Google Scholar 

  16. Suárez AC, Tancredi N, Pinheiro PCC, Yoshida MI. Thermal analysis of the combustion of charcoals from Eucalyptus dunnii obtained at different pyrolysis temperatures. J Therm Anal Calorim. 2010;100:1051–4.

    Article  Google Scholar 

  17. Núñez-Regueira L, Rodríguez-Añón JA, Proupín J, Mouriño B, Artiaga-Diaz R. Energetic study of residual forest biomass using calorimetry and thermal analysis. J Therm Anal Calorim. 2005;80:457–64.

    Article  Google Scholar 

  18. Núñez-Regueira L, Rodríguez-Añón JA, Proupín-Castiñeiras J, Romero-García A. Energetic evaluation of biomass originating from forest waste by bomb calorimetry. J Therm Anal Calorim. 2001;66:281–92.

    Article  Google Scholar 

  19. Tillman DA. Wood as an energy resource. New York: Academic Press; 1978.

    Google Scholar 

  20. Ebeling JM, Jenkins BM. Physical and chemical properties of biomass. T ASAE. 1985;28:898–902.

    Article  Google Scholar 

  21. Jenkins BM, Ebeling JM. Correlations of physical and chemical properties of terrestrial biomass with conversion: symposium energy from biomass and waste IX IGT. 1985. p. 371.

  22. Demirbaş A, Demirbaş AH. Estimating the calorific values of lignocellulosic fuels. Energy Explor Exploit. 2004;22:135–43.

    Article  Google Scholar 

  23. Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta. 2005;544:191–8.

    Article  CAS  Google Scholar 

  24. Sheng C, Azevedo JLT. Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenergy. 2005;28:499–507.

    Article  CAS  Google Scholar 

  25. Yin CY. Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel. 2011;90:1128–32.

    Article  CAS  Google Scholar 

  26. Parikh J, Channiwala SA, Ghosal GK. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel. 2005;84:487–94.

    Article  CAS  Google Scholar 

  27. Nhuchhen DR, Salam PA. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel. 2012;99:55–63.

    Article  CAS  Google Scholar 

  28. Patel SU, Kumar BJ, Badhe YP, Sharma BK, Saha S, Biswas S, Chaudhury A, Tambe SS, Kulkarni BD. Estimation of gross calorific value of coals using artificial neural networks. Fuel. 2007;86:334–44.

    Article  CAS  Google Scholar 

  29. Mesroghli S, Jorjani E, Chelgani C. Estimation of gross calorific value based on coal analysis using regression and artificial neural networks. Int J Coal Geol. 2009;79:49–54.

    Article  CAS  Google Scholar 

  30. Doymaz I, Gorel O, Akgum NA. Drying characteristics of the solid by-product of olive oil extraction. Biosyst Eng. 2004;88(2):213–9.

    Article  Google Scholar 

  31. EN 14778-2011, Solid biofuels—sampling.

  32. EN 14780-2011, Solid biofuels—sample preparation.

  33. EN 14774-1-2009, Solid biofuels—determination of moisture content—oven dry method—part 1: total moisture—reference method.

  34. EN 15104-2011, Solid biofuels—determination of total content of carbon, hydrogen and nitrogen—instrumental methods.

  35. EN 14918-2009, Solid biofuels—determination of calorific value.

  36. Research Project “Establishment of olive husk management and exchange centers for energy utilization purposese”. http://olive-energy.eu/ Accessed 2013.

  37. Niaounakis M, Halvadakis CP. Olive processing waste management: literature review and patent survey. Athens: Typothito Publ.; 2004. p. 48.

    Google Scholar 

  38. Obernberger I, Brunner T, Bärnthaler G. Chemical properties of solid biofuels-significance and impact. Biomass Bioenergy. 2006;30:973–82.

    Article  CAS  Google Scholar 

  39. Demirbaş A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit. 2002;20:105–11.

    Article  Google Scholar 

  40. Phyllis2, database for biomass and waste, http://www.ecn.nl/phyllis2, Energy research Centre of the Netherlands.

  41. Reisinger K, Haslinger C, Herger M, Hofbauer H. BIOBIB- a Database for Biofuels, THERMIE- Conference: Renewable Energy Databases, Harwell (United Kingdom), 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paris A. Fokaides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christoforou, E.A., Fokaides, P.A. & Kyriakides, I. Monte Carlo parametric modeling for predicting biomass calorific value. J Therm Anal Calorim 118, 1789–1796 (2014). https://doi.org/10.1007/s10973-014-4027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4027-5

Keywords

Navigation