Skip to main content
Log in

Calorimetric studies of solid wastes, sewage sludge, wastewaters and their effects on soil biodegradation processes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Calorimetric studies of solid wastes, sewage sludge, wastewaters and their environmental effects focus on three main research areas. The first research area involves determination of selected thermal and physical parameters characterizing the above substances, such as specific heat, thermal conductivity and others. The second area covers processes of total or gradual destruction of the examined substances at a fixed composition of the gaseous phase. The methods applied in this case enable to determine the heat of combustion or the calorific value of the analyzed material, as well as changes in the rate of heat production, measured by differential scanning calorimetry (DSC). The third area of calorimetric studies covers microbial calorimetry as a method for non-destructive monitoring of organic matter biodegradation in order to measure the kinetic and thermodynamic parameters of the investigated processes, i.e., wastewater treatment, composting and decomposition of organic soil matter, as well as to determine the stability of wastes. This paper describes, based on available literature data, the major directions of investigations, using different calorimetric methods, of solid wastes, sewage sludge and wastewaters and additionally their effects on soil microbial processes. The paper also presents the selected calorimetric studies and analyses the biodegradation kinetics of organic wastewaters and glucose decomposition in the presence of phosphogypsum in different soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sustain Energy Rev. 2008;12:116–40.

    Article  CAS  Google Scholar 

  2. The Urban Wastewater Treatment Directive 91/171/EEC.

  3. Reh U. Calorimetry in ecology. Thermochim Acta. 1991;193:107–24.

    Article  CAS  Google Scholar 

  4. Jacobsen RT, Lemmon EW, Penoncello SG, Shan Z, Wright NT. Chapter 2. Thermophysical properties of fluids and materials. In: Bejan A, Kraus AD, editors. Heat transfer handbook. New York: Wiley; 2003.

    Google Scholar 

  5. Thomas FI. Thermophysical properties. Chapter 2. In: Rohsenow WM, Hartnett JP, Cho YI, editors. Handbook of heat transfer. 3rd ed. New York: McGraw-Hill; 1998.

    Google Scholar 

  6. Nogent H, Le Tacon X. The differential reaction calorimeter: a simple apparatus to determine reaction heat, heat transport value and heat capacity. J Loss Prev Process Ind. 2002;15:445–8.

    Article  Google Scholar 

  7. Calvet E, Prat H. Microcalorimetrie. Applications physico-chimiques et biologiques. Chapter 2.1. Paris: Masson et Cie Editeurs; 1956.

    Google Scholar 

  8. Löwen B, Peikert U, Schulz S. Heat capacity measurements with a heat flow calorimeter. Thermochim Acta. 1995;255:1–8.

    Article  Google Scholar 

  9. Wadsö L. Operational issues in isothermal calorimetry. Cement Concrete Res. 2010;40:1129–37.

    Article  Google Scholar 

  10. Höhne GWH, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry. 2nd ed. Berlin, Heidelberg: Springer-Verlag; 2003.

    Google Scholar 

  11. Kaleta A. Thermal properties of plant materials. Warsaw: Agricultural University Press; 1999.

    Google Scholar 

  12. Mohsenin NN. Thermal properties of foods and agricultural materials. New York: Gordon and Breach Science Publishers; 1980.

    Google Scholar 

  13. Werle S, Wilk RK. Review of methods for the thermal utilizations of sewage sludge: the Polish perspective. Renew Energy. 2010;35:1914–9.

    Article  CAS  Google Scholar 

  14. Stasta P, Boran J, Bebar L, Stehlik P, Oral J. Thermal processing of sewage sludge. Appl Therm Eng. 2006;26:1420–6.

    Article  CAS  Google Scholar 

  15. Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z. Combustion of agricultural residues. Prog Energy Combust Sci. 2000;26:1–27.

    Article  CAS  Google Scholar 

  16. Lamprecht I. Combustion calorimetry. In: Kemp RB, editor. Handbook of thermal analysis and calorimetry. From macromolecules to men. Amsterdam: Elsevier; 1999.

    Google Scholar 

  17. Domalski ES, Jobe TL, Milne TA. Thermodynamic data for biomass conversion and waste incineration. National Bureau of Standards. Solar Energy Research Institute. SERI/SP-271-2839; 1986.

  18. Calvo LF, Otero M, Jenkins BM, Garcia AI, Morin A. Heating process characteristics and kinetics of sewage sludge in different atmosphere. Thermochim Acta. 2004;409:127–35.

    Article  CAS  Google Scholar 

  19. Gómez-Rico MF, Font F, Fullana A, Martín-Gullón I. Thermogravimetric study of different sewage sludges and their relationship with nitrogen content. J Anal Appl Pyrolysis. 2005;74:421–8.

    Article  Google Scholar 

  20. Konno T. Estimation of soil microbial activity by microcalorimetry. Netsu Sokutei no Shimpo. 1985;3:55–65.

    Google Scholar 

  21. Núñez-Regueira L, Rodriguez-Añon JA, Proupin J, Mouriño B, Artiaga-Diaz R. Energetics study of residual forest biomass using calorimetry and thermal analysis. J Therm Anal Calorim. 2005;80:457–64.

    Article  Google Scholar 

  22. Smidt E, Meissl K, Tintner J. The influence of waste sample preparation on reproducibility of thermal data. Thermochim Acta. 2008;468:55–60.

    Article  CAS  Google Scholar 

  23. Barros AJM, Santos JCO, Prasad S, Leite VD, Souza AG, Soledade LEB, Duarte MSB, dos Santos VD. Thermal decomposition study of sewage sludge and of organic waste used in the sorption of metals. J Therm Anal Calorim. 2006;83(2):291–5.

    Article  CAS  Google Scholar 

  24. Smidt E, Tintner J. Application of differential scanning calorimetry (DSC) to evaluate the quality of compost organic matter. Thermochim Acta. 2007;459:87–93.

    Article  CAS  Google Scholar 

  25. De Oliveira SC, Provenzano MR, Silva MRS, Senesi N. Maturity degree of composts from municipal solid wastes evaluated by differential scanning calorimetry. Environ Technol. 2002;23:1099–105.

    Article  Google Scholar 

  26. Baffi C, Dell’Abate MT, Nassisi A, Silva S, Benedetti A, Genevini PL, Adani F. Determination of biological stability in compost: a comparison of methodologies. Soil Biol Biochem. 2007;39:1284–93.

    Article  CAS  Google Scholar 

  27. Zhu Y, Chai X, Li H, Zhao Y, Wei Y. Combination of combustion with pyrolysis for studying the stabilization process of sludge in landfill. Thermochim Acta. 2007;464:59–64.

    Article  CAS  Google Scholar 

  28. Smidt E, Lechner P. Study on the degradation and stabilization of organic matter in waste by means of thermal analysis. Thermochim Acta. 2005;438:22–8.

    Article  CAS  Google Scholar 

  29. Provenzano MR, Ouatmane A, Hafidi M, Senesi N. Differential scanning calorimetry analysis of composted materials from different sources. J Therm Anal Calorim. 2000;61:607–14.

    Article  CAS  Google Scholar 

  30. Sánchez M, Gomez X, Barriocanal G, Cuetos MJ, Morán A. Assessment of the stability of livestock farm wastes treated by anaerobic digestion. Int Biodeterior Biodegrad. 2008;62:421–6.

    Article  Google Scholar 

  31. Plante AF, Fernández JM, Leifeld J. Applications of thermal analysis techniques in soil science. Geoderma. 2009;153:1–10.

    Article  CAS  Google Scholar 

  32. Barros N, Salgado J, Feijóo S. Calorimetry and soil. Thermochim Acta. 2007;458:11–7.

    Article  CAS  Google Scholar 

  33. Barros N, Ramajo B, Garcia JR. The effect of solid-liquid effluents from anaerobic digesters on soil microbial activity. A calorimetric study. J Therm Anal Calorim. 2009;95(3):831–5.

    Article  CAS  Google Scholar 

  34. Provenzano MR, Senesi N. Thermal properties of standard and reference humic substances by differential scanning calorimetry. J Therm Anal Calorim. 1999;57(2):517–26.

    Article  CAS  Google Scholar 

  35. Lopez-Capel E, Sohi SP, Gaunt JL, Manning DAC. Use of thermogravimetry–differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc Am J. 2005;69:136–40.

    Article  CAS  Google Scholar 

  36. Leifeld J. Calorimetric characterization of grass during its decomposition. J Therm Anal Calorim. 2008;93(2):651–5.

    Article  CAS  Google Scholar 

  37. Salgado J, Mato MM, Vazquez-Galifianes A, Paz Andrade MI, Carballas T. Comparison of two calorimetric methods to determine the loss of organic matter in Galician soils (NW Spain) due to forest wildfires. Thermochim Acta. 2004;410:141–8.

    Article  CAS  Google Scholar 

  38. Redl B, Tiefenbrunner F. Determination of hydrolytic activities in wastewater systems by microcalorimetry. Water Res. 1981;15:87–90.

    Article  CAS  Google Scholar 

  39. Fortier JL, Reboul B, Philip P, Smard M-A, Picker P, Jolicoeur C. Calorimetric studies of biodegradation processes in biological wastewater treatment. J Water Pollut Control Fed. 1980;52(1):89–97.

    CAS  Google Scholar 

  40. Beaubien A, Jolicoeur C. Application of flow microcalorimetry to process control in biological treatment of industrial wastewaters. J Water Pollut Control Fed. 1985;57(1):95–100.

    CAS  Google Scholar 

  41. Jolicoeur C, To T, Beaubien A. Flow microcalorimetry in monitoring biological activity of aerobic and anaerobic wastewater treatment processes. Anal Chim Acta. 1988;213:165–76.

    Article  CAS  Google Scholar 

  42. Menert A, Liiders M, Kurissoo T, Vilu R. Microcalorimetric monitoring of anaerobic digestion processes. J Therm Anal Calorim. 2001;64:281–91.

    Article  CAS  Google Scholar 

  43. Aulenta F, Bassani C, Lightart J, Majone M, Tilche A. Calorimetry: a tool for assessing microbial activity under aerobic and anoxic conditions. Water Res. 2002;36:1297–305.

    Article  CAS  Google Scholar 

  44. Daverio E, Aulenta F, Ligthart J, Bassani C, Rozzi A. Application of calorimetric measurements for biokinetic characterization of nitrifying population in activated sludge. Water Res. 2003;37:2723–31.

    Article  CAS  Google Scholar 

  45. Mote CR, Griffis CL. Heat production by composting organic matter. Agric Wastes. 1982;4:65–73.

    Article  Google Scholar 

  46. Mason IG, Milke MW. Physical modelling of the compost environment: a review. Part 1: reactor systems. Waste Manag. 2005;25:481–500.

    Article  CAS  Google Scholar 

  47. Velis CA, Longhurst PJ, Drew GH, Smith R, Pollard SJT. Biodrying for mechanical-biological treatment of wastes: a review of process science and engineering. Bioresour Technol. 2009;100:2747–61.

    Article  CAS  Google Scholar 

  48. Dziejowski JE, Kazanowska J. Heat production during thermophilic decomposition of municipal wastes in the Dano-system composting plant. In: Insam H, Riddech N, Klammer S, editors. Microbiology of composting. Berlin, Heidelberg: Springer-Verlag; 2002. p. 111–8.

    Google Scholar 

  49. Kazanowska J. The use of thermal analysis in studies on the process of solid waste utilization. PhD Thesis (dir. Dziejowski J), University of Warmia and Mazury, Olsztyn, Poland; 2002.

  50. Laor Y, Raviv M, Borisover M. Evaluating microbial activity in compost using microcalorimetry. Thermochim Acta. 2004;420:119–25.

    Article  CAS  Google Scholar 

  51. Medina S, Raviv M, Saadi I, Laor Y. Methological aspects of microcalorimetry used to assess the dynamics of microbial activity during composting. Bioresour Technol. 2009;100:4814–20.

    Article  CAS  Google Scholar 

  52. Seki H, Komori T. Heat transfer in composting process. Part 2. J Agric Methods. 1984;40(1):37–45.

    Google Scholar 

  53. Van Ginkiel JT. Physical and biochemical processes in composting material. Ph.D. thesis, Agricultural University Wageningen, The Netherlands; 1996, pp. 1–115.

  54. Weppen P. Process calorimetry on composting of municipal organic wastes. Biomass Bioenergy. 2001;21:289–99.

    Article  CAS  Google Scholar 

  55. Mason IG. Mathematical modelling of the composting process: a review. Waste Manag. 2006;26:3–21.

    Article  CAS  Google Scholar 

  56. Cooney CL, Wang DIC, Mateles RI. Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol Bioeng. 1968;6:95–123.

    Google Scholar 

  57. Birou B, Marison IW, von Stockar U. Calorimetric investigation of aerobic fermentations. Biotechnol Bioeng. 1987;30:650–60.

    Article  CAS  Google Scholar 

  58. Kishimoto M, Preechaphan C, Yoshida T, Taguchi H. Simulation of an aerobic composting of activated sludge using a statistical procedure. MIRCEN J. 1987;3:113–24.

    Article  CAS  Google Scholar 

  59. Yamano H, Takahashi K. Temperature effect on the activity of soil microbes measured from heat evolution during the degradation of several carbon sources. Agric Biol Chem. 1983;47(7):1493–9.

    CAS  Google Scholar 

  60. Wadsö I. Characterization of microbial activity in soil by use of isothermal calorimetry. J Therm Anal Calorim. 2009;95(3):843–50.

    Article  Google Scholar 

  61. Dziejowski J. Calorimetric and kinetic studies of the effect of nitrogenous fertilizers on organic matter decomposition in soils. Ecol Chem Eng. 2010;17(1):63–71.

    Google Scholar 

  62. Nuñez L, Barros N, Barja I. A kinetic analysis of the degradation of glucose by soil microorganisms studied by microcalorimetry. Thermochim Acta. 1994;237:73–81.

    Article  Google Scholar 

  63. Mortensen U, Norén B, Wadsö I. Microcalorimetry in the study of the activity of microorganisms. Bull Ecol Res Commun. 1973;17:189–97.

    Google Scholar 

  64. Ljungholm K, Norén B, Sköld R, Wadsö I. Use microcalorimetry for the characterization of microbial activity in soil. Oikos. 1979;33:15–23.

    Article  Google Scholar 

  65. Ljungholm K, Norén B, Wadsö I. Microcalorimetric observations of microbial activity in normal and acidified soils. Oikos. 1979;33:24–30.

    Article  CAS  Google Scholar 

  66. Sparling GP. Estimation of microbial biomass and activity in soil using microcalorimetry. J Soil Sci. 1983;34:381–90.

    Article  CAS  Google Scholar 

  67. Sparling GP. Microcalorimetry and other methods to assess biomass and activity in soil. Soil Biol Biochem. 1981;13:93–8.

    Article  CAS  Google Scholar 

  68. Sparling GP. Heat output of the soil biomass. Soil Biol Biochem. 1981;13:373–6.

    Article  CAS  Google Scholar 

  69. Kimura T, Takahashi K. Calorimetric studies of soil microbes: quantitative relations between heat evolution during microbial degradation of glucose and changes in microbial activity in soil. J Gen Microbiol. 1985;131:3083–9.

    CAS  Google Scholar 

  70. Alef K, Beck T, Zelles L, Kleiner D. A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol Biochem. 1988;20(4):561–5.

    Article  CAS  Google Scholar 

  71. Critter SAM, Freitas SS, Airoldi C. Microbial biomass and microcalorimetric methods in tropical soils. Thermochim Acta. 2002;394:145–54.

    Article  CAS  Google Scholar 

  72. Barja MI, Proupin J, Núnez L. Microcalorimetric study of the effect of temperature on microbial activity in soils. Thermochim Acta. 1997;303:155–9.

    Article  CAS  Google Scholar 

  73. Rong XM, Huang QY, Jiang DH, Cai P, Liang W. Isothermal microcalorimetry: a review of applications in soil and environmental sciences. Pedosphere. 2007;17(2):137–45.

    Article  CAS  Google Scholar 

  74. Núñez-Regueira L, Proupin-Castiñeiras J, Rodriguez-Añon JA, Villanueva-Lopez M, Núñez-Fernandez O. Design of an experimental procedure to assess soil health state. J Therm Anal Calorim. 2006;85(2):271–7.

    Article  Google Scholar 

  75. Russel M, Yao J, Chen H, Wang F, Zhou Y, Choi MMF, Zaray G, Trebse P. Different technique of microcalorimetry and their applications to environmental sciences. J Am Sci. 2009;5(4):194–208.

    Google Scholar 

  76. Vandenhove H, De Coninck K, Coorvits K, Merckx R, Vlassak K. Microcalorimetry as a tool to detect changes in soil microbial biomass. Toxicol Environ Chem. 1991;30:201–6.

    Article  CAS  Google Scholar 

  77. Critter SAM, Freitas SS, Airoldi C. Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochim Acta. 2002;394:133–44.

    Article  CAS  Google Scholar 

  78. Koga K, Suehiro Y, Matsuoka ST, Takahashi K. Evaluation of growth activity oh microbes in tea field soil using microbial calorimetry. J Biosci Biotechnol. 2003;95(5):429–34.

    CAS  Google Scholar 

  79. Dziejowski J. Calorimetric and respirometric characteristics of the decomposition of animal wastewaters in soil. Thermochim Acta. 1995;251:37–43.

    Article  CAS  Google Scholar 

  80. Tayibi H, Choura M, López FA, Alguacil FJ, López-Delgado A. Environmental impact and management of phosphogypsum. J Environ Manag. 2009;90:2377–86.

    Article  CAS  Google Scholar 

  81. El Afifi EM, Hilal MA, Attallah MF, El-Reefy SA. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production. J Environ Radioact. 2009;100:407–12.

    Article  CAS  Google Scholar 

  82. Pérez-López R, Álvarez-Valero AM, Nieto JM. Changes in mobility of toxic elements during productions of phosphoric acid in the fertilizer industry in Huelva (SW Spain) and environmental impact of phosphogypsum wastes. J Hazard Mater. 2007;148:745–50.

    Article  Google Scholar 

  83. Papastefanou C, Stoulos S, Ioannidou A, Manolopoulou M. The application of phosphogypsum in agriculture and the radiological impact. J Environ Radioact. 2006;89:188–98.

    Article  CAS  Google Scholar 

  84. Shirakawa MA, Selmo SM, Cincotto MA, Gaylarde CC, Brazolini S, Gambale W. Susceptibility of phosphogypsum to fungal growth and the effect of various biocides. Int Biodeterior Biodegrad. 2002;49:293–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant under Project No. NN313442537 (the Ministry of Science and Higher Education. Poland) and a Grant No. 528-1002-0803 (University of Warmia and Mazury in Olsztyn, Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dziejowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dziejowski, J., Białobrzewski, I. Calorimetric studies of solid wastes, sewage sludge, wastewaters and their effects on soil biodegradation processes. J Therm Anal Calorim 104, 161–168 (2011). https://doi.org/10.1007/s10973-010-1260-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1260-4

Keywords

Navigation