Skip to main content
Log in

Thermal compatibility studies of nitroimidazoles and excipients

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nitroimidazoles are heterocycle imidazoles with a nitrogen group incorporated in its structure. The objective of this study was to develop a model to characterize possible interactions between active substances and excipients using: Thermogravimetry, Differential Thermal Analysis, Differential Scanning Calorimetry, and DSC coupled to photovisual system. It was used three nitroimidazoles (metronidazole, secnidazole, and tinidazole) and two types of microcrystalline cellulose with different particle size (Microcel and Avicel). The binary mixtures were prepared in proportion (w/w) 1:1 (nitroimidazole:excipient). Thermogravimetric data demonstrated that the tinidazole was the nitroimidazole with better uniformity. The nitroimidazoles obeyed the zero order kinetic reaction, evidencing its vaporization processes. Differential thermal analysis data showed nitroimidazoles compatibility with the different microcrystalline celluloses studied, showing that microcrystalline celluloses stabilized the active substances. Calorimetric data of secnidazole showed two melting points, characteristic of the polymorphs presented in raw material. The vaporization constants values of nitroimidazoles studied were secnidazole > metronidazole > tinidazole and for the binary mixtures these values followed the order tinidazole > metronidazole ≥ secnidazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acar J, Petitjean O, Dubreuil L. Secnidazole, a new 5-nitro-imidazole. Antibiotiques. 2005;7:177–82.

    Article  CAS  Google Scholar 

  2. Cronly M, Behan P, Foley B, Malone E, Malone E, Regan L. Rapid confirmatory method for the determination of 11 nitroimidazoles in egg using liquid chromatography tandem mass spectrometry. J Chromatogr A. 2009;1216:8101–9.

    Article  CAS  Google Scholar 

  3. Nagaraja P, Sunitha KR, Vasantha RA, Yathirajan HS. Spectrophotometric determination of metronidazole and tinidazole in pharmaceutical preparations. J Pharm Biomed Anal. 2002;28:527–35.

    Article  CAS  Google Scholar 

  4. Salomies H, Salo J-P. An HPLC study of tinidazole hydrolysis. Chromatogr. 1993;36:79–82.

    Article  CAS  Google Scholar 

  5. Moyano MA, Broussalis AM, Segall AI. Thermal analysis of lipoic acid and evaluation of the compatibility with excipients. J Therm Anal Calorim. 2010;99:631–7.

    Article  CAS  Google Scholar 

  6. Bernardi LS, Oliveira PR, Murakami FS, Silva MAS, Borgmann SHM, Cardoso SG. Characterization of venlafaxine hydrochloride and compatibility studies with pharmaceutical excipients. J Therm Anal Calorim. 2009;97:729–30.

    Article  CAS  Google Scholar 

  7. Freire FD, Aragão CFS, Lima e Moura, TFA, Raffin FN. Compatibility study between chlorpropamide and excipients in their physical mixtures. J Therm Anal Calorim. 2009;97:355–7.

    Google Scholar 

  8. Rodrigues PO, Cardoso TFM, Silva MAS, Matos JR. Application of thermal analytical techniques on characterization, purity determination and degradation kinetic of zidovudine (AZT). Acta Farm Bonaer. 2005;24:383–7.

    CAS  Google Scholar 

  9. Zhang Y, Law Y, Chakrabarti S. Physical properties and compact analysis of commonly used direct compression binders. AAPS PharmSciTech. 2003;4:62.

    Article  Google Scholar 

  10. Bolhuis GK, Chowhan ZT, Alderborn EG, Nyström C. Pharmaceutical powder compaction technology. New York: Marcel Dekker Inc; 1996.

    Google Scholar 

  11. Battista OA, Hill D, Smith PA. US Patent 2. 1961; 978:446.

  12. Hüttenrauch R, Keiner I. Einflue des preducks auf den ordungsgrad von cellulose pulvern. Pharm J. 1976;31:490–1.

    Google Scholar 

  13. Nakai Y, Fukuoka E, Nakajima S, Hasegawa J. Crystallinity and physical characteristics of microcrystalline cellulose. Chem Pharm Bull. 1977;25:96–101.

    CAS  Google Scholar 

  14. Rowe RC, McKillopp AG, Bray D. The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int J Pharm. 1994;101:169–72.

    Article  CAS  Google Scholar 

  15. Picker-Freyer KM. An insight into the process of tablet formation of microcrystalline cellulose. J Therm Anal Calorim. 2007;89:745–8.

    Article  CAS  Google Scholar 

  16. Fulias A, Vlase T, Vlase G, Doca N. Thermal behaviour of cephalexin in different mixtures. J Therm Anal Calorim. 2010;99:987–92.

    Article  CAS  Google Scholar 

  17. Nunes RS, Semaan FS, Riga AT, Cavalheiro ETG. Thermal behavior of verapamil hydrochloride and its association with excipients. J Therm Anal Calorim. 2009;97:349–53.

    Article  CAS  Google Scholar 

  18. Moreschi ECP, Matos JR, Almeida-Muradian LB. Thermal analysis of vitamin PP Niacin and niacinamide. J Therm Anal Calorim. 2009;98:161–4.

    Article  CAS  Google Scholar 

  19. Santos AFO, Basílio Júnior ID, Souza FS de, Medeiros AFD, Pinto MF, Santana DP de, Macêdo RO. Application of thermal analysis of binary mixtures with metformin. J Therm Anal Calorim. 2008;93:361–4.

  20. Kiss D, Zelkó R, Novák Cs, Éhen Zs. Application of DSC and NIRS to study the compatibility of metronidazole with different pharmaceutical excipients. J Therm Anal Calorim. 2006;84:447–51.

    Article  CAS  Google Scholar 

  21. Macêdo RO, Nascimento TG do. Quality control of thiabendazole pre-formulation and tablets by TG and DSC coupled to the photovisual system. Thermochim Acta. 2002;392–393:85–92.

  22. Giron D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J Therm Anal Calorim. 2002;68:335–57.

    Article  CAS  Google Scholar 

  23. Hazra A, Alexander K, Dollimore D, Riga A. Characterization of some essential oils and their key components: thermoanalytical techniques. J Therm Anal Calorim. 2004;75:317–30.

    Article  CAS  Google Scholar 

  24. Gomes APB, Correia LP, Simões MOS, Macêdo RO. Development of thermogravimetric method for quantitative determination of metronidazole. J Therm Anal Calorim. 2007;88:383–7.

    Article  CAS  Google Scholar 

  25. Medeiros AFD, Santos AFO, Souza FS de, Basílio Júnior ID, Procópio JVV, Santana DP de, Macêdo RO. Thermal studies of pre-formulates of metronidazole obtained by spray drying technique. J Therm Anal Calorim. 2007;89:775–81.

Download references

Acknowledegments

The authors thank to CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Ferraz Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, M.F., de Moura, E.A., de Souza, F.S. et al. Thermal compatibility studies of nitroimidazoles and excipients. J Therm Anal Calorim 102, 323–329 (2010). https://doi.org/10.1007/s10973-010-0889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0889-3

Keywords

Navigation