Skip to main content
Log in

Preparation of magnetic nanocrystalline Mn0.5Mg0.5Fe2O4 and kinetics of thermal decomposition of precursor

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The spinel Mn0.5Mg0.5Fe2O4 was obtained via calcining Mn0.5Mg0.5Fe2(C2O4)3·5H2O above 400 °C in air. The precursor and its calcined products were characterized by thermogravimetry and differential scanning calorimetry, Fourier transform FT-IR, X-ray powder diffraction, scanning electron microscopy, energy dispersive X-ray spectrometer, and vibrating sample magnetometer. The results showed that Mn0.5Mg0.5Fe2O4 obtained at 600 °C had a specific saturation magnetization of 46.2 emu g–1. The thermal decomposition of Mn0.5Mg0.5Fe2(C2O4)3·5H2O below 450 °C experienced two steps which involved, at first, the dehydration of five water molecules and then decomposition of Mn0.5Mg0.5Fe2(C2O4)3 into spinel Mn0.5Mg0.5Fe2O4 in air. Based on Starink equation, the values of the activation energies associated with the thermal decomposition of Mn0.5Mg0.5Fe2(C2O4)3·5H2O were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marinca TF, Chicinas I, Isnard O. Influence of the heat treatment conditions on the formation of CuFe2O4 from mechanical milled precursors oxides. J Therm Anal Calorim. 2012;110:301–7.

    Article  CAS  Google Scholar 

  2. Gabal MA, Ahmed MA. structural, electrical and magnetic properties of copper-cadmium ferrites prepared from metal oxalates. J Mater Sci. 2005;40:387–98.

    Article  CAS  Google Scholar 

  3. Wu WW, Li YN, Zhou KW, Wu XH, Liao S, Wang Q. Nanocrystalline Zn0.5Ni0.5Fe2O4: preparation and kinetics of thermal process of precursor. J Therm Anal Calorim. 2012;110:1143–51.

    Article  CAS  Google Scholar 

  4. Sun ZP, Liu L, Jia DZ, Pan WY. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sens Actuators B. 2007;125:144–8.

    Article  CAS  Google Scholar 

  5. Li JJ, Yuan HM, Li GD, Liu YJ, Leng JS. Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. J Magn Magn Mater. 2010;322:3396–400.

    Article  CAS  Google Scholar 

  6. Wu XH, Wu WW, Zhou KW, Cui XM, Liao S. Products and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)3·6H2O. J Therm Anal Calorim. 2012;110:781–7.

    Article  CAS  Google Scholar 

  7. Li FS, Wang HB, Wang L, Wang JB. Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method. J Magn Magn Mater. 2007;309:295–9.

    Article  CAS  Google Scholar 

  8. Wu WW. C, Wu XH, Li YN, Liao S. Magnetic properties and crystallization kinetics of Zn0.5Ni0.5Fe2O4. Rare Met. 2011;30:621–6.

    Article  CAS  Google Scholar 

  9. Satyanarayana L, Madhusudan Reddy K, Manorama SV. Nano-sized spinel NiFe2O4: a novel material for the detection of liquefied petroleum gas in air. Mater Chem Phys. 2003;82:21–6.

    Article  CAS  Google Scholar 

  10. Zhang K, Holloway T, Pradhan AK. Magnetic behavior of nanocrystalline CoFe2O4. J Magn Magn Mater. 2011;323:1616–22.

    Article  CAS  Google Scholar 

  11. Wu WW, Cai JC, Wu XH, Liao S, Huang AG. Co0.35Mn0.65Fe2O4 magnetic particles: preparation and kinetics research of thermal process of the precursor. Powder Technol. 2012;215–216:200–5.

    Google Scholar 

  12. John Berchmans L, Karthikeyan R, Helan M, Berchmans Sheela, Ŝepelak V, Becker KD. Mechanochemical synthesis and electrochemical characterization of nano crystalline calcium ferrite. Catal Lett. 2011;141:1451–7.

    Article  Google Scholar 

  13. Maqsood A, Faraz A. Synthesis, structural, electrical and magnetic characterization of Mn0.5Mg0.5−x Ni x Fe2O4 spinel Nanoferrites. J Supercond Nov Magn. 2011. doi:10.1007/s10948-011-1343-x.

  14. Huang JW, Su P, Wu WW, Li YN, Wu XH, Liao S. Preparation of magnetic Cu0.5Mg0.5Fe2O4 nanoparticles and kinetics of thermal process of precursor. J Supercond Nov Magn. 2012;25:1971–7.

    Article  CAS  Google Scholar 

  15. Wang WW. Microwave-induced polyol-process synthesis of MIIFe2O4 (M = Mn, Co) nanoparticles and magnetic property. Mater Chem Phys. 2008;108:227–31.

    Article  CAS  Google Scholar 

  16. Tromsdorf UI, Bigall NC, Kaul MG, Bruns OT, Nikolic MS, Mollwitz B, Sperling RA, Reimer R, Hohenberg H, Parak WJ, Förster S, Beisiegel U, Adam G, Weller H. Size and surface effects on the MRI, relaxivity of manganese ferrite nanoparticle contrast agents. Nano Lett. 2007;7:2422–7.

    Article  CAS  Google Scholar 

  17. Liu XM, Yang G, Fu SY. mass synthesis of manocrystalline spinel ferrites by a polymer-pyrolysis route. Mater Sci Eng C. 2007;27:750–5.

    Article  CAS  Google Scholar 

  18. Zhen L, He K, Xu CY, Shao WZ. Synthesis and characterization of single-crystalline MnFe2O4 nanorods via a surfactant-free hydrothermal route. J Magn Magn Mater. 2008;320:2672–5.

    Article  CAS  Google Scholar 

  19. Wang J, Chen QW, Hou BY, Peng ZM. Synthesis and magnetic properties of single-crystals of MnFe2O4 nanorods. Eur J Inorg Chem. 2004;35:1165–8.

    Article  Google Scholar 

  20. Ju YW, Park JH, Jung HR, Cho SJ, Lee WJ. Electrospun MnFe2O4 nanofibers: preparation and morphology. Compos Sci Technol. 2008;68:1704–9.

    Article  CAS  Google Scholar 

  21. Zhang DE, Zhang XJ, Ni XM, Song JM, Zheng HG. Low-temperature fabrication of MnFe2O4 octahedrons: magnetic and electrochemical properties. Chem Phys Lett. 2006;426:120–3.

    Article  CAS  Google Scholar 

  22. Iyer R, Desai R, Upadhyay RV. Low temperature synthesis of nanosized Mn1–xZnxFe2O4 ferrites and their characterizations. Bull Mater Sci. 2009;32:141–7.

    Article  CAS  Google Scholar 

  23. Faraz A, Saqib M, Ahmad NM, Fazal-ur-Rehman, Maqsood A, Usman M, Mumtaz A, Hassan MA. Synthesis, structural, and magnetic characterization of Mn1−xNixFe2O4 spinel nanoferrites. J Supercond Nov Magn. 2011. doi: 10.1007/s10948-011-1212-7.

  24. Sharma SK, Ravi Kumar, Siva Kumar VV, Knobel M, Reddy VR, Gupta A, Singh M. Role of electronic energy loss on the magnetic properties of Mg0.95Mn0.05Fe2O4 nanoparticles. Nucl Instrum Methods Phys Res B. 2006;248:37–41.

    Article  CAS  Google Scholar 

  25. Mansour SF, Elkestawy MA. A comparative study of electric properties of nano-structured and bulk Mn–Mg spinel ferrite. Ceram Int. 2011;37:1175–80.

    Article  CAS  Google Scholar 

  26. Mansour SF. Structural and magnetic investigations of sub-nano Mn–Mg ferrite prepared by wet method. J Magn Magn Mater. 2011;323:1735–40.

    Article  CAS  Google Scholar 

  27. Okasha N. Enhancement of magnetization of Mg–Mn nanoferrite by γ-irradiation. J Alloys Compd. 2010;490:307–10.

    Article  CAS  Google Scholar 

  28. Maqsood A, Faraz A. Synthesis, structural, electrical and magnetic characterization of Mn0.5Mg0.5−xNixFe2O4 spinel nanoferrites. J Supercond Nov Magn. 2012;25:1025–33.

    Google Scholar 

  29. Msomi JZ, Moyo T, Abdallah HMI. Magnetic properties of MgxMn1−xFe2O4 nanoferrites. J Supercond Nov Magn. 2012. doi:10.1007/s10948-011-1235-0.

  30. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  32. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrol. 2008;81:253–62.

    Article  CAS  Google Scholar 

  33. Liqing L, Donghua C. Application of iso-temperature method of multiple rate to kinetic analysis: Dehydration for calcium oxalate monohydrate. J Therm Anal Calorim. 2004;78:283–93.

    Article  CAS  Google Scholar 

  34. Jiang HY, Wang JG, Wu SQ, Wang BS, Wang ZZ. Pyrolysis kinetics of phenol–formaldehyde resin by non-isothermal thermogravimetry. Carbon. 2010;48:352–8.

    Article  CAS  Google Scholar 

  35. Wu XH, Wu WW, Cui XM, Liao S. Preparation of nanocrystalline BiFeO3 via a simple and novel method and its kinetics of crystallization. J Therm Anal Calorim. 2012;107:625–32.

    Article  CAS  Google Scholar 

  36. Boonchom B, Danvirutai C, Youngme S, Maensiri S. Simple synthesis, magnetic properties, and nonisothermal decomposition kinetics of Fe(H2PO4)2·2H2O. Ind Eng Chem Res. 2008;47:7642–7.

    Article  CAS  Google Scholar 

  37. Deb N. Solid-state thermal decomposition of heterobimetallic oxalate coordination compounds, zinc(II) tetraaquatris (oxalato) lanthanate(III)hexahydrate and cadmium(II) heptaaquatris(oxalato)lanthanate(III)tetrahydrate. J Therm Anal Calorim. 2012. http://dx.doi.org/10.1007/s10973-012-2437-9.

  38. Deb N. Some heterobimetallic oxalate coordination precursors of lanthanum(III) of the type, M3[La(C2O4)3(H2O) m ]2·nH2O (M = Mn(II), Co(II), Ni(II) and Cu(II)). J Thermal Anal Calorim. 2012;107:561–71.

    Article  CAS  Google Scholar 

  39. Donia AM. Synthesis, identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3013–31.

    Article  CAS  Google Scholar 

  40. Goel SP, Mehrotra PN. IR and thermal studies on lithium oxomolybdenum (VI) oxalate. J Therm Anal. 1985;30:145–51.

    Article  CAS  Google Scholar 

  41. Berbenni V, Milanese C, Bruni G, Girella A, Marini A. Synthesis of YFeO3 by thermal decomposition of mechanically activated mixtures Y(CH3COO)3·4H2O–FeC2O4·2H2O. Thermochim Acta. 2011;521:218–23.

    Article  CAS  Google Scholar 

  42. Jiang CT, Liu RJ, Shen XQ, Zhu L, Song FZ. Ni0.5Zn0.5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovine serum albumin. Powder Technol. 2011;211:90–4.

    Article  CAS  Google Scholar 

  43. Budrugeac P, Muşat V, Segal E. Non-isothermal kinetic study on the decomposition of Zn acetate-based sol-gel precursor. J Therm Anal Calorim. 2007;88:699–702.

    Article  CAS  Google Scholar 

  44. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2012;107:1023–9.

    Article  CAS  Google Scholar 

  45. Huang JW, Su P, Wu WW, Li YN, Wu XH, Tao L. Preparation of nanocrystalline BiFeO3 and kinetics of thermal process of precursor. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2524-y.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (Grant no. 21161002) and the Guangxi Nature Science Foundation of China (Grant no. 2011GXNSFA018036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, K., Wu, W., Li, Y. et al. Preparation of magnetic nanocrystalline Mn0.5Mg0.5Fe2O4 and kinetics of thermal decomposition of precursor. J Therm Anal Calorim 114, 205–212 (2013). https://doi.org/10.1007/s10973-012-2927-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2927-9

Keywords

Navigation