Skip to main content
Log in

Investigating the effect of Cd on the structure and magnetic properties of (Mn,Co,Ni,Cu,Zn)Fe2O4 high entropy spinel oxide

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Evaluating the substitution of Cd for Mn, Co, Ni, Cu, and Zn elements in the high entropy oxide structure (Mn,Co,Ni,Cu,Zn)Fe2O4, is the primary focus in this investigation. For this purpose, five different high entropy oxides (HEOs), namely (Cd,Co,Ni,Cu,Zn)Fe2O4, (Mn,Cd,Ni,Cu,Zn) Fe2O4, (Mn,Co,Cd,Cu,Zn)Fe2O4, (Mn,Co,Ni,Cd,Zn)Fe2O4, and (Mn,Co,Ni,Cu,Cd)Fe2O4 were synthesized using combustion solution synthesis (SCS) method. X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), elemental mapping, and field emission scanning electron microscopy (FESEM) were used to analyze the synthesized samples. The analyses confirmed the formation of single-phase (Fd-3m) nanocrystalline powders with an increased lattice parameter. Fourier Transform Infrared Spectroscopy (FTIR) revealed the placement of Cd element in the tetrahedral sub-lattice (A-site). Vibrating sample magnetometer (VSM) was employed to assess the magnetic properties. The results indicated that, in most cases, substitution of Cd for Mn, Co, Ni, Cu, and Zn leads to an increase in both the saturation magnetization (Ms) and coercivity (Hc) of the nanocrystalline powder samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The data will be available upon request.

References

  1. C.M. Rost et al., Entropy-stabilized oxides. Nat. Commun. 6(1), 8485 (2015). https://doi.org/10.1038/ncomms9485

    Article  ADS  Google Scholar 

  2. A. Sarkar et al., High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31(26), 1806236 (2019). https://doi.org/10.1002/adma.201806236

    Article  Google Scholar 

  3. R. Djenadic et al., Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 5(2), 102–109 (2017)

    Article  Google Scholar 

  4. L. Spiridigliozzi, C. Ferone, R. Cioffi, G. Accardo, D. Frattini, G. Dell’Agli, Entropy-stabilized oxides owning fluorite structure obtained by hydrothermal treatment. Materials 13(3), 558 (2020)

    Article  ADS  Google Scholar 

  5. A. Sarkar et al., Rare earth and transition metal based entropy stabilised perovskite type oxides. J. Eur. Ceram. Soc. 38(5), 2318–2327 (2018)

    Article  Google Scholar 

  6. J. Dąbrowa et al., Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni) 3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 216, 32–36 (2018)

    Article  Google Scholar 

  7. C. Kinsler-Fedon et al., Synthesis, characterization, and single-crystal growth of a high-entropy rare-earth pyrochlore oxide. Physical Review Materials 4(10), 104411 (2020)

    Article  ADS  Google Scholar 

  8. C. Zhao, F. Ding, Y. Lu, L. Chen, Y.S. Hu, High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem. Int. Ed. 59(1), 264–269 (2020)

    Article  Google Scholar 

  9. D. Vinnik et al., Correlation between entropy state, crystal structure, magnetic and electrical properties in M-type Ba-hexaferrites. J. Eur. Ceram. Soc. 40(12), 4022–4028 (2020)

    Article  Google Scholar 

  10. A. Sarkar, R. Kruk, H. Hahn, Magnetic properties of high entropy oxides. Dalton Trans. 50(6), 1973–1982 (2021)

    Article  Google Scholar 

  11. R. Valenzuela, Magnetic Ceramics (no. 4) (Cambridge University Press, 2005)

    Google Scholar 

  12. G. Pilania, V. Kocevski, J.A. Valdez, C.R. Kreller, B.P. Uberuaga, Prediction of structure and cation ordering in an ordered normal-inverse double spinel. Commun. Mater. 1(1), 1–11 (2020)

    Article  Google Scholar 

  13. A. Mao, F. Quan, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, A.-L. Xia, Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 1194, 11–18 (2019). https://doi.org/10.1016/j.molstruc.2019.05.073

    Article  ADS  Google Scholar 

  14. K. Wu, J. Li, C. Zhang, Zinc ferrite based gas sensors: a review. Ceram. Int. 45(9), 11143–11157 (2019). https://doi.org/10.1016/j.ceramint.2019.03.086

    Article  Google Scholar 

  15. M. Fu, X. Ma, K. Zhao, X. Li, D. Su, High-entropy materials for energy-related applications. iScience 24(3), 102177 (2021). https://doi.org/10.1016/j.isci.2021.102177

    Article  ADS  Google Scholar 

  16. T. Lazarova et al., Influence of the type of fuel used for the solution combustion synthesis on the structure, morphology and magnetic properties of nanosized NiFe2O4. J. Alloy. Compd. 700, 272–283 (2017). https://doi.org/10.1016/j.jallcom.2017.01.055

    Article  Google Scholar 

  17. C.-C. Hwang, J.-S. Tsai, T.-H. Huang, Combustion synthesis of Ni–Zn ferrite by using glycine and metal nitrates—investigations of precursor homogeneity, product reproducibility, and reaction mechanism. Mater. Chem. Phys. 93(2), 330–336 (2005). https://doi.org/10.1016/j.matchemphys.2005.03.056

    Article  Google Scholar 

  18. E. Novitskaya, J.P. Kelly, S. Bhaduri, O.A. Graeve, A review of solution combustion synthesis: an analysis of parameters controlling powder characteristics. Int. Mater. Rev. 66(3), 188–214 (2021). https://doi.org/10.1080/09506608.2020.1765603

    Article  Google Scholar 

  19. J.C. Toniolo, A.S. Takimi, C.P. Bergmann, Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method. Mater. Res. Bull. 45(6), 672–676 (2010). https://doi.org/10.1016/j.materresbull.2010.03.001

    Article  Google Scholar 

  20. A. Mao, H.-Z. Xiang, Z.-G. Zhang, K. Kuramoto, H. Zhang, Y. Jia, A new class of spinel high-entropy oxides with controllable magnetic properties. J. Magn. Magn. Mater. 497, 165884 (2020). https://doi.org/10.1016/j.jmmm.2019.165884

    Article  Google Scholar 

  21. S. Dai, M. Li, X. Wang, H. Zhu, Y. Zhao, Z. Wu, Fabrication and magnetic property of novel (Co, Zn, Fe, Mn, Ni)3O4 high-entropy spinel oxide. J. Magn. Magn. Mater. 536, 168123 (2021). https://doi.org/10.1016/j.jmmm.2021.168123

    Article  Google Scholar 

  22. H. Zhu, H. Xie, Y. Zhao, S. Dai, M. Li, X. Wang, Structure and magnetic properties of a class of spinel high-entropy oxides. J. Magn. Magn. Mater. 535, 168063 (2021). https://doi.org/10.1016/j.jmmm.2021.168063

    Article  Google Scholar 

  23. F. Hosseini Mohammadabadi, S.M. Masoudpanah, S. Alamolhoda, H.R. Koohdar, Electromagnetic microwave absorption properties of high entropy spinel ferrite ((MnNiCuZn)1−xCoxFe2O4)/graphene nanocomposites. J. Mater. Res. Technol. 14, 1099–1111 (2021). https://doi.org/10.1016/j.jmrt.2021.07.018

    Article  Google Scholar 

  24. A.R. Abbasian, M. Shafiee Afarani, One-step solution combustion synthesis and characterization of ZnFe 2 O 4 and ZnFe 1.6 O 4 nanoparticles. Appl. Phys. A 125, 1–12 (2019)

    Article  ADS  Google Scholar 

  25. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13(1), 251–256 (2011)

    Article  ADS  Google Scholar 

  26. A.R. Abbasian, A. Mahvary, S. Alirezaei, Salt-assisted solution combustion synthesis of NiFe2O4: Effect of salt type. Ceram. Int. 47(17), 23794–23802 (2021). https://doi.org/10.1016/j.ceramint.2021.05.086

    Article  Google Scholar 

  27. A.M. Vasilica Tucureanu, A.M. Avram, FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 46, 502–520 (2016)

    Article  Google Scholar 

  28. M.S.A.F. Paborji, A.M. Arabi, M. Ghahari, Phase transformation of FeCr2O4 to (Fe, Cr)2O3 solid solution pigment powders: effect of post-heating temperature. Int. J. Appl. Ceram. Technol. 20, 281–293 (2023)

    Article  Google Scholar 

  29. F. Paborji, M. Shafiee Afarani, A.M. Arabi, M. Ghahari, Solution combustion synthesis of FeCr2O4 powders for pigment applications: effect of fuel type. Int. J. Appl. Ceram. Technol. 19(5), 2406–2418 (2022)

    Google Scholar 

  30. S.A.M.F. Paborji, A.M. Arabi, M. Ghahari, Synthesis of (Fe, Cr)2O3 solid solution pigment powders for ink application. Int. J. Appl. Ceram. Technol. 20, 1154–1166 (2023)

    Article  Google Scholar 

  31. S. Bedanta, A. Barman, W. Kleemann, O. Petracic, T. Seki, Magnetic nanoparticles: a subject for both fundamental research and applications. J. Nanomater. 2013, 169–169 (2013)

    Article  Google Scholar 

  32. H.K. Ulrich Meisen, The influence of particle size, shape and particle size distribution on properties of magnetites for the production of toners. J. Imaging Sci. Technol. 6, 508–513 (2000). https://doi.org/10.2352/J.ImagingSci.Technol.2000.44.6.art00007

    Article  Google Scholar 

  33. H. Iida, K. Takayanagi, T. Nakanishi, T. Osaka, Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci. 314(1), 274–280 (2007). https://doi.org/10.1016/j.jcis.2007.05.047

    Article  ADS  Google Scholar 

  34. C.W.K. Qing Li, S. Horie, T. Ogi, T. Iwaki, K. Okuyama, Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Sci. Rep. 7, 9894 (2017)

    Article  ADS  Google Scholar 

  35. SMa.S.M. Mritunjoy Prasad Ghosh, Correlations between microstructural and magnetic properties of Gd3+ doped spinel ferrite nanoparticles. Eur. Phys. J. Plus (2020). https://doi.org/10.1140/epjp/s13360-020-00112-5

    Article  Google Scholar 

  36. T.S. Mondal et al., NiFe2O4 nanorod: porosity effect on spin canting, quadrupole splitting and hyperfine magnetic properties. Mater. Res. Express 2(4), 046102 (2015). https://doi.org/10.1088/2053-1591/2/4/046102

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Hunyek, C. Sirisathitkul, C. Mahaphap, U. Boonyang, W. Tangwatanakul, Sago starch: chelating agent in Sol-gel synthesis of cobalt ferrite nanoparticles. J. Aust. Ceram. Soc. 53(1), 173–176 (2017). https://doi.org/10.1007/s41779-017-0022-1

    Article  Google Scholar 

Download references

Acknowledgements

We express our high gratitude to the University of Sistan and Baluchestan for generously providing the necessary laboratory facilities for the successful execution of this research. Additionally, our sincere thanks go to Fereydoun Oukti Sadeq and Mahdi Shafiee Afrani from the Department of Materials Engineering, Faculty of Engineering, University of Sistan and Baluchestan, and Abbas Rahdar from the Department of Physics, Faculty of Science, Zabol University, for their valuable assistance.

Author information

Authors and Affiliations

Authors

Contributions

Authors equally contributed to this work.

Corresponding author

Correspondence to Morteza Khosravi.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, M., Sharafi, S. & Irannejad, A. Investigating the effect of Cd on the structure and magnetic properties of (Mn,Co,Ni,Cu,Zn)Fe2O4 high entropy spinel oxide. Appl. Phys. A 130, 335 (2024). https://doi.org/10.1007/s00339-024-07507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07507-6

Keywords

Navigation