Skip to main content
Log in

Products and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)3·6H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

MgFe2(C2O4)3·6H2O was synthesized by solid-state reaction at low heat using MgSO4·7H2O, FeSO4·7H2O, and Na2C2O4 as raw materials. The spinel MgFe2O4 was obtained via calcining MgFe2(C2O4)3·6H2O above 500 °C in air. The MgFe2(C2O4)3·6H2O and its calcined products were characterized by thermogravimetry and differential scanning calorimetry (TG/DSC), Fourier transform FT-IR, X-ray powder diffraction (XRD), and vibrating sample magnetometer (VSM). The result showed that MgFe2O4 obtained at 800 °C had a specific saturation magnetization of 40.4 emu g−1. The thermal process of MgFe2(C2O4)3·6H2O experienced three steps, which involves the dehydration of the six waters of crystallization at first, and then decomposition of MgFe2(C2O4)3 into amorphous MgFe2O4 in air, and at last crystallization of MgFe2O4. Based on Flynn–Wall–Ozawa equation, the average values of the activation energies associated with the thermal decomposition of MgFe2(C2O4)3·6H2O were determined to be 148.45 ± 25.50 and 184.08 ± 7.64 kJ mol−1 for the first and second decomposition steps, respectively. Dehydration of the six waters of MgFe2(C2O4)3·6H2O is multi-step reaction mechanisms. Decomposition of MgFe2(C2O4)3 into MgFe2O4 could be simple reaction mechanisms, kinetic model that can better describe the thermal decomposition of MgFe2(C2O4)3 is the F 3/4 model, and the corresponding function is g(α) = 1 − (1 − α)1/4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pileni MP. Magnetic fluids: fabrication, magnetic properties, and organization of nanocrystals. Adv Funct Mater. 2001;5:323–36.

    Article  Google Scholar 

  2. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:167.

    Article  Google Scholar 

  3. Sasaki T, Ohara S, Naka T, Vejpravova J, Sechovsky V, Umetsu M, Takami S, Jeyadevan B, Adschiri T. Continuous synthesis of fine MgFe2O4 nanoparticles by supercritical hydrothermal reaction. J Supercrit Fluids. 2010;53:92–4.

    Article  CAS  Google Scholar 

  4. Song Q, Zhang ZJ. Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc. 2004;126:6164–8.

    Article  CAS  Google Scholar 

  5. Pankhurst QA, Pollard RJ. Fine-particle magnetic oxides. J Phys Condens Matter. 1993;5:8487–508.

    Article  CAS  Google Scholar 

  6. Sivakumar N, Gnanakan SRP, Karthikeyan K, Amaresh S, Yoon WS, Park GJ, Lee YS. Nanostructured MgFe2O4 as anode materials for lithium-ion batteries. J Alloys Compd. 2011;509:7038–41.

    Article  CAS  Google Scholar 

  7. Rezlescu N, Iftimie N, Rezlescu E, Doroftei C, Popa PD. Semiconducting gas sensor for acetone based on the fine grained nickel ferrite. Sens Actuators B. 2006;114:427–32.

    Article  Google Scholar 

  8. Willey RJ, Noirclerc P, Busca G. Preparation and characterization of magnesium chromite and magnesium ferrite aerogels. Chem Eng Commun. 1993;123:1–16.

    Article  CAS  Google Scholar 

  9. Bergmann I, Šepelák V, Becker KD. Preparation of nanoscale MgFe2O4 via non-conventional mechanochemical. Solid State Ionics. 2006;177:1865–8.

    Article  CAS  Google Scholar 

  10. Sivakumara N, Narayanasamy A, Greneche JM, Murugaraj R, Leed YS. Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J Alloys Compd. 2010;504:395–402.

    Article  Google Scholar 

  11. Chen Q, Rondinone AJ, Chakoumakos BC, Zhang ZJ. Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation. J Magn Magn Mater. 1999;194:1–7.

    Article  CAS  Google Scholar 

  12. Hankare PP, Jadhav SD, Sankpal UB, Patil RP, Sasikala R, Mulla IS. Gas sensing properties of magnesium ferrite prepared by co-precipitation method. J Alloys Compd. 2009;488:270–2.

    Article  CAS  Google Scholar 

  13. Pradeep A, Priyadharsini P, Chandrasekaran G. Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J Magn Magn Mater. 2008;320:2774–9.

    Article  CAS  Google Scholar 

  14. Huang YJ, Tang Y, Wang J, Chen QW. Synthesis of MgFe2O4 nanocrystallites under mild conditions. Mater Chem Phys. 2006;97:394–7.

    Article  CAS  Google Scholar 

  15. Chandradass J, Kim KH. Solvent effects in the synthesis of MgFe2O4 nanopowders by reverse micelle processing. J Alloys Compd. 2011;509:59–62.

    Article  Google Scholar 

  16. Verma S, Joy PA, Khollam YB, Potdar HS, Deshpande SB. Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method. Mater Lett. 2004;58:1092–5.

    Article  CAS  Google Scholar 

  17. Wu WW, Li SS, Liao S, Xiang F, Wu XH. Preparation of new sunscreen materials Ce1−x Zn x O2−x via solid-state reaction at room temperature and study on their properties. Rare Metals. 2010;29:149–53.

    Article  CAS  Google Scholar 

  18. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  19. Ozawa TA. New method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  20. Wu XH, Wu WW, Cui XM, Liao S. Preparation of nanocrystalline BiFeO3 via a simple and novel method and its kinetics of crystallization, J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1483-z.

  21. Wu XH, Wu WW, Liu C, Li SS, Liao S, Cai JC. Synthesis of layered sodium manganese phosphate via low-heating solid-state reaction and its properties. Chin J Chem. 2010;28:2394–8.

    Article  CAS  Google Scholar 

  22. Wu XH, Wu WW, Cui XM, Liao S. Selective self-assembly synthesis of MnV2O6·4H2O with controlled morphologies and study on its thermal decomposition. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1577-7.

  23. Elizabeth A, Joseph C, Paul I, Ittyachen MA, Mathew KT, Lonappan A, Jacob J. Microwave studies on double rare earth oxalate crystals. Mater Sci Eng A. 2005;391:43–50.

    Article  Google Scholar 

  24. Donia AM. Synthesis, identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3013–31.

    Article  CAS  Google Scholar 

  25. Goel SP, Mehrotra PN. IR and thermal studies on lithium oxomolybdenum (VI) oxalate. J Thermal Anal. 1985;30:145–51.

    Article  CAS  Google Scholar 

  26. Jiang CT, Liu RJ, Shen XQ, Zhu L, Song FZ. Ni0.5Zn0.5Fe2O4 nanoparticles and their magnetic properties and adsorption of bovine serum albumin. Powder Technol. 2011;211:90–4.

    Article  CAS  Google Scholar 

  27. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of \-isothermal kinetics of decomposition of calcium oxalate monohydrate. J Anal Appl Pyrolysis. 2008;81:253–62.

    Article  CAS  Google Scholar 

  28. Genieva SD, Vlaev LT, Atanassov AN. Study of the thermooxidative degradation kinetics of poly(tetrafluoroethene) using iso-conversional calculation procedure. J Therm Anal Calorim. 2010;99:551–61.

    Article  CAS  Google Scholar 

  29. Wu XH, Wu WW, Li SS, Cui XM, Liao S. Kinetics and thermodynamics of thermal decomposition of NH4NiPO4·6H2O. J Therm Anal Calorim. 2011;103:805–12.

    Article  CAS  Google Scholar 

  30. Boonchom B, Danvirutai C. Kinetics and thermodynamics of thermal decomposition of synthetic AlPO4·2H2O. J Therm Anal Calorim. 2009;98:771–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (Grant no. 21161002) and the Guangxi Nature Science Foundation of China (Grant no. 2011GXNSFA018036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Wu, W., Zhou, K. et al. Products and non-isothermal kinetics of thermal decomposition of MgFe2(C2O4)3·6H2O. J Therm Anal Calorim 110, 781–787 (2012). https://doi.org/10.1007/s10973-011-1968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1968-9

Keywords

Navigation