Skip to main content
Log in

Methodology of interpreting thermal analysis of polymers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The goal of the thermal analysis experiments is to extract scientifically and technological important information from measurements of “heat.” Unfortunately, there exists no direct heat meter. In fact, the assessment of the quantity heat has a colorful past and, as is a common human trait, the back-integration of successively gained knowledge into the basic teaching is lax, as in all stages of education. Thermal analysis can be taken as a prime example of this problem. A “Methodology of Interpreting Thermal Analysis of Polymers” is described in this report on the example of recent data on poly(butylene terephthalate), PBT, crystallized by slow cooling from the melt. It is shown how the simple temperature-difference or heat-flow rate as a function of sample temperature is converted to calorimetric information. Once calorimetric data are available, the results can be interpreted using modern descriptions of phases, making use of a scheme of phase structures as well as considering molecular motion arguments and phase sizes. Using the three classical types of strong chemical bonding leads to 57 possible condensed phases and two types of transitions (glass and order/disorder transitions) necessary for the description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McNaught AD, Wilkinson A. IUPAC compendium of chemical terminology (the “Gold Book”). Oxford: Blackwell, Scientific; 1997. XML on-line corrected version: http://goldbook.iupac.org 2006, created by Nic M, Jirat J, Kosata B, updates compiled by Jenkins A; ISBN 0-9678550-9-8. doi:10.1351/goldbook.

  2. Wunderlich B. Thermal analysis of polymeric materials. Berlin: Springer; 2005. ISBN 978-3-540-23629-0 (Print) 978-3-540-26360-9 (Online).

  3. Wunderlich B. A science career against all odds. Berlin: Springer; 2010. ISBN 978-3-642-11195-2 (pp. 9-85–9-86).

  4. Barke H-D, Hazari A, Yitbarek S. Misconceptions in chemistry: addressing perceptions in chemical education. Berlin: Springer; 2009. ISBN 978-3-540-70898-3.

  5. Pyda M, Nowak-Pyda E, Heeg J, Huth H, Minakov AA, Di Lorenzo ML, Schick C, Wunderlich B. Melting and crystallization of poly(butylene terephthalate) by temperature-modulated and superfast calorimetry. J Polym Sci B. 2006;44:1364–77.

    Article  CAS  Google Scholar 

  6. Merriam Webster’s Collegiate Dictionary, 11th ed. Springfield: Merriam-Webster Inc; 2003. http://www.mw.com/.

  7. Boller A, Jin Y, Wunderlich B. Heat capacity measurement by modulated DSC at constant temperature. J Therm Anal. 1994;42:307–30.

    Article  CAS  Google Scholar 

  8. Minakov AA, Schick C. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 Mk/s. Rev Sci Inst. 2007;78:073902-1-10.

    Google Scholar 

  9. Wunderlich B. Thermodynamic description of condensed phases. J Therm Anal Calorim. 2010;102:413–24.

    Article  CAS  Google Scholar 

  10. Boller A, Schick C, Wunderlich B. Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta. 1995;266:97–111.

    Article  CAS  Google Scholar 

  11. Wunderlich B. A classification of molecules and transitions as recognized by thermal analysis. Thermochim Acta. 1999;340(/341):37–52.

    Article  Google Scholar 

  12. Chen W, Wunderlich B. Nanophase separation of small and large molecules. Macromol Chem Phys. 1999;200:283–311.

    Article  CAS  Google Scholar 

  13. Wunderlich B, Boller A, Okazaki I, Kreitmeier S. Modulated differential scanning calorimetry in the glass transition region, part II. The mathematical treatment of the kinetics of the glass transition. J Therm Anal. 1996;47:1013–26.

    Article  CAS  Google Scholar 

  14. Boller A, Okazaki I, Wunderlich B. Modulated differential scanning calorimetry in the glass transition region, part III. Evaluation of polystyrene and poly(ethylene terephthalate). Thermochim Acta. 1996;284:1–19.

    Article  CAS  Google Scholar 

  15. Okazaki I, Wunderlich B. Modulated differential scanning calorimetry in the glass transition region, part V. Activation energies and relaxation times of poly(ethylene terephthalate)s. J Polym Sci B. 1996;34:2941–52.

    Article  CAS  Google Scholar 

  16. Okazaki I, Wunderlich B. Modulated differential scanning calorimetry in the glass transition region, part VI. Model calculations based on poly(ethylene terephthalate). J Therm Anal. 1997;49:57–70.

    Article  Google Scholar 

  17. Wunderlich B. Quasi-isothermal temperature-modulated differential scanning calorimetry (TMDSC) for the separation of reversible and irreversible thermodynamic changes in glass transition and melting ranges of flexible macromolecules. Pure Appl Chem. 2009;81:1931–52.

    Article  CAS  Google Scholar 

  18. Wunderlich B. Motion in polyethylene II. Vibrations in crystalline polyethylene. J Chem Phys. 1962;37:1207–16.

    Article  CAS  Google Scholar 

  19. Pyda M, Bartkowiak M, Wunderlich B. Computation of heat capacities of solids using a general Tarasov equation. J Therm Anal Calorim. 1998;52:631–56.

    Article  CAS  Google Scholar 

  20. Wunderlich B, Baur H. Heat capacities of linear high polymers. Fortschr Hochpolymeren Forsch (Adv Polymer Sci). 1970;7:151–368.

    CAS  Google Scholar 

  21. Pyda M, Nowak-Pyda E, Mays J, Wunderlich B. Heat capacity of poly(butylene terephthalate). J Polym Sci B. 2004;42:4401–11.

    Article  CAS  Google Scholar 

  22. Wunderlich B. The Athas Data Base on heat capacities of polymers. Pure Appl Chem. 1995;67:1019–1026. For data via the internet, see http://athas.prz.rzeszow.pl.

  23. Gaur U, Cao M-Y, Pan R, Wunderlich B. An addition scheme of heat capacities of linear macromolecules. Carbon backbone polymers. J Therm Anal. 1986;31:421–45.

    Article  CAS  Google Scholar 

  24. Pan R, Cao M-Y, Wunderlich B. An addition scheme of heat capacities of linear macromolecules. Part II, backbone-chains that contain other than C-bonds. J Therm Anal. 1986;31:1319–42.

    Article  CAS  Google Scholar 

  25. Loufakis K, Wunderlich B. Computation of heat capacity of liquid macromolecules based on a statistical mechanical approximation. J Phys Chem. 1988;92:4205–9.

    Article  CAS  Google Scholar 

  26. Pyda M, Wunderlich B. Computation of heat capacities of liquid polymers. Macromolecules. 1999;32:2044–50.

    Article  CAS  Google Scholar 

  27. Sumpter BG, Noid DW, Liang GL, Wunderlich B. Atomistic dynamics of macromolecular crystals. Adv Polymer Sci. 1994;116:27–72.

    Article  CAS  Google Scholar 

  28. Cheng SZD, Pan R, Wunderlich B. Thermal analysis of poly(butylene terephthalate), its heat capacity, rigid-amorphous fraction and transition behavior. Makromol Chem. 1988;189:2443–58.

    Article  CAS  Google Scholar 

  29. Wunderlich B. Theory of cold crystallization of high polymers. J Chem Phys. 1958;29:1395–404.

    Article  CAS  Google Scholar 

  30. Wunderlich B. Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules. Progr Polym Sci. 2003;28(3):383–450.

    Article  CAS  Google Scholar 

  31. Wunderlich B. The influence of liquid to solid transitions on the changes of macromolecular phases from disorder to order. Thermochim Acta. 2010. doi:10.1016/j.tca.2010.09.005; in print.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Wunderlich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderlich, B. Methodology of interpreting thermal analysis of polymers. J Therm Anal Calorim 106, 85–91 (2011). https://doi.org/10.1007/s10973-010-1270-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1270-2

Keywords

Navigation