Skip to main content
Log in

Heat capacity measurement by modulated DSC at constant temperature

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

“The submitted manuscript has been authored by a contractor of the U.S. Government under the contract No. DE-AC05-84OR21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes”

Abstract

The mathematical equations for step-wise measurement of heat capacity (C p ) by modulated differential scanning calorimetry (MDSC) are discussed for the conditions of negligible temperature gradients within sample and reference. Using a commercial MDSC, applications are evaluated and the limits explored. This new technique permits the determination ofC p by keeping the sample continually close to equilibrium, a condition conventional DSC is unable to meet. Heat capacity is measured at ‘practically isothermal condition’ (often changing not more than ±1 K). The method provides data with good precision. The effects of sample mass, amplitude and frequency of temperature modulation were studied and methods for optimizing the instrument are proposed. The correction for the differences in sample and reference heating rates, needed for high-precision data by standard DSC, do not apply for this method.

Zusammenfassung

Die mathematischen Gleichungen für die stufenweise Messung der Wärmekapazität (C p ) mit modulierter Differential kalorimetrie (MDSC) werden für die Bedingung eines vernachlässigbar kleinen Temperaturgradierten in Probe und Referenzsubstanz diskutiert. Diese neue Technik ermöglicht die Bestimmung vonC p ohne die Probe wesentlich vom Gleichgewicht zu entfernen, eine Bedingung die conventionelles DSC nicht erreichen kann. Die Wärmekapazität is unter “praktisch isothermer Bedingung” gemessen worden (haäfig innerhalb ±1 K). Diese Methode gibt Daten von guter Qualität. Die Effekte der Probenmasse, Amplitude und Frequenz der Temperaturmodulation wurden untersucht und Methoden für die Optimirung des Instruments werden vorgeschlagen. Die Korrekturen für Unterschiede zwischen Proben-und Refernztemparatur aufheizgeschwindigkeiten die für das normale DSC für Daten von hoher Qualität gebraucht werden, sind für diese Methode nicht nötig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refereces

  1. A. Mehta, R. C. Bopp, U. Gaur and B. Wunderlich, J. Thermal Anal., 13 (1987) 197.

    Article  Google Scholar 

  2. B. Wunderlich and U. Gaur, ACS Adv. in Chemistry, Series 203, C. D. Craver, ed. Washington DC, p. 195, 1982.

  3. U. Gaur, A. Mehta and B. Wunderlich, J. Thermal Anal., 13 (1978) 71; A. Mehta and B. Wunderlich, Coatings and Plastics Preprints, Am. Chem. Soc., 35 (1975) 393.

    Article  CAS  Google Scholar 

  4. B. Wunderlich, J. Thermal Anal., 32 (1987) 1949.

    Article  CAS  Google Scholar 

  5. Y. Jin and B. Wunderlich, J. Thermal Anal., 36 (1990) 365; 1519; and 38 (1992) 2257.

    Google Scholar 

  6. S. R. Sauerbrunn, B. S. Crowe and M. Reading, 21st Proc. NATAS Conf. in Atlanta GA, Sept. 13–16, pp. 137–144 (1992); M. Reading, B. K. Hahn, and G. S. Crowe, US Patent 5,224,775 (July 6, 1993).

  7. B. Wunderlich, Y. Jin and A. Boller, Thermochim. Acta, to be published (1994).

  8. M. Reading, D. Elliot and V. L. Hill, J. Thermal Anal. 40 (1993) 949; P. S. Gill, S. R. Sauerbrunn and M. Reading, J. Thermal Anal. 40 (1993) 931; M. Reading, Trends in Polymer Sci., 8 (1993) 248.

    CAS  Google Scholar 

  9. P. F. Sullivan and G. Seidel, Phys. Rev., 173 (1968) 679.

    Article  CAS  Google Scholar 

  10. G. Dixon, S. G. Black, C. T. Butler and A. K. Jain, Anal. Biochem., 121 (1982) 55.

    Article  CAS  Google Scholar 

  11. B. Wunderlich, “Differential Thermal Analysis, A. Weissberger and B. W. Rossiter eds. ‘Physical Methods in Chemistry.’ Vol. 1, Part V, Chapter 8. J. Wiley and Sons, New York, 1971.

    Google Scholar 

  12. B. Wunderlich, ‘Thermal Analysis,’ Academic Press, Boston, MA 1990.

    Google Scholar 

  13. W. Hemminger and G. Höhne, ‘Calorimetry,’ Verlag Chemie, Weinheim, 1984.

    Google Scholar 

  14. J. M. Sturtevant, ‘Calorimetry,’ in A. Weissberger and B. W. Rossiter eds ‘Physical Methods in Chemistry.” Vol. 1, Part V, Chapter 7. J. Wiley and Sons, New York, 1971.

    Google Scholar 

  15. A. Boller, C. Schick and B. Wunderlich, to be submitted 1994.

  16. D. A. Ditmars, S. Ishihara, S. S. Chang, G. Bernstein and E. D. West, J. Research, Natl. Bur. Stand., 87 (1982) 159.

    CAS  Google Scholar 

  17. Y. Jin, A. Xenopoulos, J. Cheng, W. Chen, B. Wunderlich, M. Diack, C. Jin, R. L. Hettich, R. N. Compton and G. Guiochon, Mol. Cryst. Liq. Cryst., to be submitted 1994.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boller, A., Jin, Y. & Wunderlich, B. Heat capacity measurement by modulated DSC at constant temperature. Journal of Thermal Analysis 42, 307–330 (1994). https://doi.org/10.1007/BF02548519

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02548519

Keywords

Navigation