Skip to main content
Log in

An addition scheme of heat capacities of linear macromolecules. Carbon backbone polymers

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

It is shown that heat capacities of linear macromolecules consisting of all-carbon single-bonded backbones can be calculated from the appropriate contributions of substituted carbon atoms to a precision of about − 0.2±2.5% (155 data points), which is similar to the experimental precision. Heat capacity contributions of 42 groups are given over the full range of measurement and reasonable extrapolation. The quality of the addition scheme is tested on 16 series of measurements on homopolymers, copolymers and blends. The addition scheme works for all these different states of aggregation of the constituent groups. The basis of the addition scheme is discussed.

Zusammenfassung

Es wird gezeigt, daß Wärmekapazitäten von aus Hauptketten mit ausschließlich C-C-Einfachbindungen bestehenden Makromolekülen aus geeigneten Beiträgen der substituierten Kohlenstoffatome mit einer Genauigkeit bis etwa −0.2±2.5% (155 Datenpunkte) berechnet werden können, was der experimentellen Genauigkeit nahe kommt. Wärmekapazitätsbeiträge von 42 Gruppen wurden über den vollen Meßbereich hinweg und durch sinnvolle Extrapolation bestimmt und angegeben. Die Zuverlässigkeit des Additionsschemas wurde in 16 Meßreihen an Homopolymeren, Kopolymeren und Mischungen getestet. Das Additionsschema ist für alle diese verschiedenen Anordnungen der konstitutionellen Gruppen zutreffend. Die Grundlagen des Additionsschemas werden diskutiert.

Резюме

Показано, что теплоем косщи линейных макромолекул, состоя щих только из углерод углерод одинарных связей, мог ут быть вычислены, исх одя из отдельных вкладов замешенных атомов углерода, с точ ностью около −0,2 ±2,5% (155 точ ечных данных), что соответст вует экспериментальной т очногти. Теплоемкост и 42 групп-вкладов привед ены в широкой области измерений и дана их пр иемлемая экстраполя ция. Качество этой аддити вной схемы проверено на 16 серии измерений гомо полимеров, сополимер ов и смесей. Аддитивная схема спр аведлива для всех различных типов сочетания этих соста вных групп. Обсуждены основы пре дложенной аддитивной схемы.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Wunderlich and L. D. Jones, J. Macromol. Sci., Phys., B3 (1969) 67.

    Google Scholar 

  2. U. Gaur and B. Wunderlich, ACS Symp. Ser. Vol. 197, T. Provder, p. 355, Washington, 1982. for data see J. Phys. Chem. Ref. Data, 10 (1981) 89, 119, 1001, 1051; 11 (1982) 313, 1065; 12 (1983) 29, 65, 91.

  3. U. Gaur and B. Wunderlich, Am. Chem. Soc. Polymer Div. Preprints, 20 (1979) 429.

    Google Scholar 

  4. B. Wunderlich, J. Chem. Phys., 37 (1962) 1203.

    Article  Google Scholar 

  5. U. Gaur and B. Wunderlich, Macromolecules, 13 (1980) 1618.

    Article  Google Scholar 

  6. S.-F. Lau, J. Pathak and B. Wunderlich, Macromolecules, 15 (1982) 1278.

    Article  Google Scholar 

  7. B. Wunderlich and U. Gaur, in “Thermal Analysis, Vol. 2” W. Hemminger and Birkhäuser, Basel, 1980, p. 409.

    Google Scholar 

  8. B. Wunderlich, J. Phys. Chem., 64 (1960) 1052; see also Refs 7, 3, 2, and 1.

    Google Scholar 

  9. B. Wunderlich, “Macromolecular Physics, Vol. 3, Crystal Melting.” Academic Press, New York, 1980; Polymer Eng. Sci., 18 (1977) 431; Am. Chem. Soc. Polymer Div. Preprints, 18(1977)264.

    Google Scholar 

  10. B. Wunderlich and H. Baur, Adv. Polymer. Sci., 7 (1970) 151.

    Google Scholar 

  11. Yu. V. Cheban, S.-F. Lau and B. Wunderlich, Colloid and Polymer Sci., 260 (1982) 9.

    Article  Google Scholar 

  12. A. Bondi, “Physical Properties of Molecular Crystals, Liquids, and Glasses.” J. Wiley and Sons, New York, NY, 1968.

    Google Scholar 

  13. J. Grebowicz, S.-F. Lau and B. Wunderlich, J. Polymer Sci., Polymer Symposia, 71 (1984) 19.

    Google Scholar 

  14. J. Grebowicz, H. Suzuki and B. Wunderlich, Polymer, 26 (1985) 561.

    Article  Google Scholar 

  15. S.-F. Lau and B. Wunderlich, J. Polymer Sci., Polymer Phys. Ed., 22 (1984) 379.

    Google Scholar 

  16. D. E. Kirkpatrick, L. Judovits and B. Wunderlich, J. Polymer Sci., Polymer Phys. Ed., 24 (1985) 46.

    Google Scholar 

  17. K. Loufakis and B. Wunderlich, Polymer, 26 (1985) 1875.

    Article  Google Scholar 

  18. B. Wunderlich and U. Gaur, ACS Advances in Chemistry Series 203, (Polymer Characterization, C. D. Craver, ed.) Washington D.C., 1982, p. 195. Preprinted Org. Coatings and Plastics Preprints ACS, 44 (1981) 654 and Polymer Preprints ACS, 22 (1981) 308.

  19. G. A. Clegg, D. R. Gee and T. P. Melia, Makromol. Chem., 116 (1968) 130.

    Article  Google Scholar 

  20. G. A. Clegg, D. R. Gee and T. P. Melia, Makromol. Chem., 119 (1968) 184.

    Article  Google Scholar 

  21. G. A. Clegg, D. R. Gee and T. P. Melia, Makromol. Chem., 132 (1970) 203.

    Article  Google Scholar 

  22. U. Gaur and B. Wunderlich, Macromolecules, 13 (1980) 1618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from the University of Science and Technology of China, Hefei, Peoples Republic of China.

This work was supported through the many years it took to assemble the needed experimental data by the National Science Foundation,-Polymers Program, Grant # DMR 8317097.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, U., Cao, M.Y., Pan, R. et al. An addition scheme of heat capacities of linear macromolecules. Carbon backbone polymers. Journal of Thermal Analysis 31, 421–445 (1986). https://doi.org/10.1007/BF01911074

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01911074

Keywords

Navigation