Skip to main content
Log in

Experimental and Data Fitting Guidelines for the Determination of Polymer Crystallization Kinetics

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The crystallization kinetics of semicrystalline polymers is often studied with isothermal experiments and analyzed by fitting the data with analytical expressions of the Avrami and Lauritzen and Hoffman (LH) theories. To correctly carry out the analysis, precautions in both experiments and data fitting should be taken. Here, we systematically discussed the factors that influence the validity of the crystallization kinetics study. The basic concepts and fundamentals of the Avrami and LH theories were introduced at first. Then, experimental protocols were discussed in detail. To clarify the impact of various experimental parameters, selected common polymers, i.e., polypropylene and polylactide, were studied using various experimental techniques (i.e., differential scanning calorimetry and polarized light optical microscopy). Common mistakes were simulated under conditions when non-ideal experimental parameters were applied. Furthermore, from a practical point of view, we show how to fit the experimental data to the Avrami and the LH theories, using an Origin® App developed by us.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, J.; Reiter, G.; Alamo, R. G. Concepts of nucleation in polymer crystallization. Crystals 2021, 11, 304.

    Article  CAS  Google Scholar 

  2. Ozawa, T. Kinetics of non-isothermal crystallization. Polymer 1971, 12, 150–158.

    Article  CAS  Google Scholar 

  3. Toda, A. A reinterpretation of the Ozawa model for non-isothermal crystallization at fixed scan rates. Thermochimica Acta 2021, 707, 179086.

    Article  CAS  Google Scholar 

  4. Di Lorenzo, M. L.; Silvestre, C. Non-isothermal crystallization of polymers. Prog. Polym. Sci. 1999, 24, 917–950.

    Article  CAS  Google Scholar 

  5. Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 1941, 9, 177–184.

    Article  CAS  Google Scholar 

  6. Avrami, M. Kinetics of phase change. I. General theory. J. Chem. Phys. 1939, 7, 1103–1112.

    Article  CAS  Google Scholar 

  7. Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212–224.

    Article  CAS  Google Scholar 

  8. Fanfoni, M.; Tomellini, M. The Johnson-Mehl-Avrami-Kohnogorov model: a brief review. II Nuovo Cimento D 1998, 20, 1171–1182.

    Article  Google Scholar 

  9. Lorenzo, A. T.; Arnal, M. L.; Albuerne, J.; Müller, A. J. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym. Test. 2007, 26, 222–231.

    Article  CAS  Google Scholar 

  10. Piorkowska, E.; Galeski, A.; Haudin, J. M. Critical assessment of overall crystallization kinetics theories and predictions. Prog. Polym. Sci. 2006, 31, 549–575.

    Article  CAS  Google Scholar 

  11. Hoffman, J. D.; Lauritzen, J. I. Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J. Res. Natl. Bur. Stand., Sect. A 1961, 65A, 297–336.

    Article  CAS  Google Scholar 

  12. Lauritzen, J. I.; Hoffman, J. D. Theory of formation of polymer crystals with folded chains in dilute solution. J. Res. Natl. Bur. Stand., Sect. A 1960, 64A, 73–102.

    Article  CAS  Google Scholar 

  13. Muthukumar, M.; Welch, P. Modeling polymer crystallization from solutions. Polymer 2000, 41, 8833–8837.

    Article  CAS  Google Scholar 

  14. Zhang, M. C.; Guo, B. H.; Xu, J. A review on polymer crystallization theories. Crystals 2017, 7, 4.

    Article  CAS  Google Scholar 

  15. Hoffman, J. D.; Miller, R. L. Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 1997, 38, 3151–3212.

    Article  CAS  Google Scholar 

  16. Baltá-Calleja, F. J.; Ezquerra, T. A., Polymer crystallization: general concepts of theory and experiments. In Encyclopedia of Materials: Science and Technology, Buschow, K. H. J., Cahn, R. W., Flemings, M. C., Ilschner, B., Kramer, E. J., Mahajan, S., Veyssière, P., Eds. Elsevier: Oxford, 2001; pp. 7244–7252.

    Chapter  Google Scholar 

  17. Gedde, U. W.; Hedenqvist, M. S., Crystallization Kinetics. In Fundamental Polymer Science, Springer International Publishing: Cham, 2019; pp. 327–386.

    Chapter  Google Scholar 

  18. Wypych, G., Handbook of Nucleating Agents. ChemTec Publishing: 2016; pp. 1–3.

  19. Sangroniz, L.; Cavallo, D.; Müller, A. J. Self-nucleation effects on polymer crystallization. Macromolecules 2020, 53, 4581–4604.

    Article  CAS  Google Scholar 

  20. Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J. Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 2013, 54, 4059–4077.

    Article  CAS  Google Scholar 

  21. Michell, R. M.; Blaszczyk-Lezak, I.; Mijangos, C.; Müller, A. J. Confined crystallization of polymers within anodic aluminum oxide templates. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1179–1194.

    Article  CAS  Google Scholar 

  22. Schick, C.; Androsch, R., New Insights into Polymer Crystallization by Fast Scanning Chip Calorimetry. In Fast Scanning Calorimetry, Schick, C., Mathot, V., Eds. Springer International Publishing: Cham, 2016; pp. 463–535.

    Chapter  Google Scholar 

  23. Cavallo, D.; Müller, A. J., Polymer Crystallization. In Macromolecular Engineering: From Precise Synthesis to Macroscopic Materials and Applications, 2nd Edition ed.; Matyjaszewski, K., Gnanou, Y., Hadjichristidi, N., Muthukumar, M., Eds. John Wiley & Sons, Inc.: 2022.

  24. Müller, A. J.; Michell, R. M.; Lorenzo, A. T., Isothermal Crystallization Kinetics of Polymers. In Polymer Morphology, 2016; pp. 181–203.

  25. Fillon, B.; Wittmann, J. C.; Lotz, B.; Thierry, A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1383–1393.

    Article  CAS  Google Scholar 

  26. Michell, R. M.; Mugica, A.; Zubitur, M.; Müller, A. J., Self-Nucleation of Crystalline Phases Within Homopolymers, Polymer Blends, Copolymers, and Nanocomposites. In Polymer Crystallization I: From Chain Microstructure to Processing, Auriemma, F., Alfonso, G. C., de Rosa, C., Eds. Springer International Publishing: Cham, 2017; pp. 215–256.

    Google Scholar 

  27. Müller, A. J.; Michell, R. M.; Pérez, R. A.; Lorenzo, A. T. Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications. Eur. Polym. J. 2015, 65, 132–154.

    Article  CAS  Google Scholar 

  28. López-Barrón, C. R.; Hagadorn, J. R.; Throckmorton, J. A. Isothermal crystallization kinetics of α-olefin molecular bottlebrushes. Macromolecules 2020, 53, 7439–7449.

    Article  CAS  Google Scholar 

  29. Lorenzo, A. T.; Müller, A. J. Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1478–1487.

    Article  CAS  Google Scholar 

  30. Pérez-Camargo, R. A.; Meabe, L.; Liu, G.; Sardon, H.; Zhao, Y.; Wang, D.; Müller, A. J. Even-Odd effect in aliphatic polycarbonates with different chain lengths: from poly(hexamethylene carbonate) topoly (dodecamethylene carbonate). Macromolecules 2020, 54, 259–271.

    Article  CAS  Google Scholar 

  31. Zhang, S.; Wang, Z.; Guo, B.; Xu, J. Secondary nucleation in polymer crystallization: a kinetic view. Polym. Cryst. 2021, 4, e10173.

    CAS  Google Scholar 

  32. Androsch, R.; Toda, A.; Furushima, Y.; Schick, C. Insertion-crystallization-induced low-temperature annealing peaks in melt-crystallized poly(L-lactic acid). Macromol. Chem. Phys. 2021, 222, 2100177.

    Article  CAS  Google Scholar 

  33. Wutz, C.; Bark, M.; Cronauer, J.; Döhrmann, R.; Zachmann, H. G. Simultaneous measurements of small angle X-ray scattering, wide angle X-ray scattering, and light scattering during phase transitions in polymers. Rev. Scientif. Instr. 1995, 66, 1303–1307.

    Article  CAS  Google Scholar 

  34. Gedde, U. W., Polymer Physics. Springer Netherlands: 1999; p. 298.

    Book  Google Scholar 

  35. Nogales, A.; Ezquerra, T. A.; Batallán, F.; Frick, B.; López-Cabarcos, E.; Baltá-Calleja, F. J. Restricted dynamics in poly(ether ether ketone) as revealed by incoherent quasielastic neutron scattering and broad-band dielectric spectroscopy. Macromolecules 1999, 32, 2301–2308.

    Article  CAS  Google Scholar 

  36. Murthy, N. S., Chapter 3—Experimental Techniques for Understanding Polymer Crystallization. In Crystallization in Multiphase Polymer Systems, Thomas, S., Arif P, M., Gowd, E. B., Kalarikkal, N., Eds. Elsevier: 2018; pp. 49–72.

  37. Rueda, D. R.; Viksne, A.; Malers, L.; Calleja, F. J. B.; Zachmann, H. G. Influence of morphology on the microhardness of poly(ethylene naphthalene-2,6-dicarboxylate). Macromol. Chem. Phys. 1994, 195, 3869–3876.

    Article  CAS  Google Scholar 

  38. Baltá Calleja, F. J.; Fakirov, S., Microhardness of Polymers. Cambridge University Press: Cambridge, 2000.

    Book  Google Scholar 

  39. Mandelkern, L., Crystallization of Polymers: Volume 1: Equilibrium Concepts. 2 ed.; Cambridge University Press: Cambridge, 2002; Vol. 1.

    Google Scholar 

  40. Ergoz, E.; Fatou, J. G.; Mandelkern, L. Molecular weight dependence of the crystallization kinetics of linear polyethylene. I. Experimental results. Macromolecules 1972, 5, 147–157.

    Article  CAS  Google Scholar 

  41. Balsamo, V.; Urdaneta, N.; Pérez, L.; Carrizales, P.; Abetz, V.; Müller, A. J. Effect of the polyethylene confinement and topology on its crystallisation within semicrystalline ABC triblock copolymers. Eur. Polym. J. 2004, 40, 1033–1049.

    Article  CAS  Google Scholar 

  42. Müller, A. J.; Balsamo, V.; Arnal, M. L., Nucleation and Crystallization in Diblock and Triblock Copolymers. In Block Copolymers II, Abetz, V., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp. 1–63.

    Google Scholar 

  43. Su, C.; Chen, Y.; Shi, G.; Li, T.; Liu, G.; Müller, A. J.; Wang, D. Crystallization kinetics of poly(ethylene oxide) under confinement in nanoporous alumina studied by in situ X-ray scattering and simulation. Langmuir 2019, 35, 11799–11808.

    Article  CAS  PubMed  Google Scholar 

  44. Michell, R. M.; Müller, A. J. Confined crystallization of polymeric materials. Prog. Polym. Sci. 2016, 54–55, 183–213.

    Article  CAS  Google Scholar 

  45. Fisher, J. C.; Hollomon, J. H.; Turnbull, D. Nucleation. J. Appl. Phys. 1948, 19, 775–784.

    Article  CAS  Google Scholar 

  46. Lauritzen Jr, J. I.; Hoffman, J. D. Formation of polymer crystals with folded chains from dilute solution. J. Chem.Phys. 1959, 31, 1680–1681.

    Article  CAS  Google Scholar 

  47. Patki, R.; Mezghani, K.; Phillips, P. J., Crystallization Kinetics of Polymers. In Physical Properties of Polymers Handbook, Mark, J. E., Ed. Springer New York: New York, NY, 2007; pp. 625–640.

    Chapter  Google Scholar 

  48. Mandelkern, L., Crystallization of Polymers: Volume 2: Kinetics and Mechanisms. 2 ed.; Cambridge University Press: Cambridge, 2004; Vol. 2.

    Book  Google Scholar 

  49. Müller, A. J.; Albuerne, J.; Marquez, L.; Raquez, J. M.; Degée, P.; Dubois, P.; Hobbs, J.; Hamley, I. W. Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss. 2005, 128, 231–252.

    Article  PubMed  Google Scholar 

  50. Sabino, M. A.; Albuerne, J.; Müller, A. J.; Brisson, J.; Prud’homme, R. E. Influence of in vitro hydrolytic degradation on the morphology and crystallization behavior of poly(p-dioxanone). Biomacromolecules 2004, 5, 358–370.

    Article  CAS  PubMed  Google Scholar 

  51. Sadler, D. M.; Gilmer, G. H. Rate-theory model of polymer crystallization. Phys. Rev. Lett. 1986, 56, 2708–2711.

    Article  CAS  PubMed  Google Scholar 

  52. Hu, W.; Frenkel, D.; Mathot, V. B. F. Intramolecular nucleation model for polymer crystallization. Macromolecules 2003, 36, 8178–8183.

    Article  CAS  Google Scholar 

  53. Strobl, G. From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization. Eur. Phys. J. E 2000, 3, 165–183.

    Article  CAS  Google Scholar 

  54. Kundagrami, A.; Muthukumar, M. Continuum theory of polymer crystallization. J. Chem. Phys. 2007, 126, 144901.

    Article  PubMed  CAS  Google Scholar 

  55. Li, C. Y. The rise of semicrystalline polymers and why are they still interesting. Polymer 2020, 211, 123150.

    Article  CAS  Google Scholar 

  56. Hu, W. Principles of Polymer Crystallization. Chemical Industry Press, Beijing, 2021.

    Google Scholar 

  57. Hu, W. Growth rate equations of lamellar polymer crystals. Polym. Cryst. 2018, 1, e25831.

    Google Scholar 

  58. Armitstead, K.; Goldbeck-Wood, G.; Keller, A., Polymer crystallization theories. In Macromolecules: Synthesis, Order and Advanced Properties, Springer Berlin Heidelberg: Berlin, Heidelberg, 1992; pp. 219–312.

    Chapter  Google Scholar 

  59. Hiemenz, P. C.; Lodge, T. P., Polymer Chemistry Second Edition ed.; CRC Press: 2007.

  60. Liang, G.; Bao, S.; Zhu, F., Chapter 2 — Theoretical Aspects of Polymer Crystallization in Multiphase Systems. In Crystallization in Multiphase Polymer Systems, Thomas, S., Arif P, M., Gowd, E. B., Kalarikkal, N., Eds. Elsevier: 2018; pp. 17–48.

  61. Thomas, D. G.; Staveley, L. A. K. 889. A study of the supercooling of drops of some molecular liquids. J. Chem. Soc. 1952, 4569–4577.

  62. Lorenzo, A. T.; Arnal, M. L.; Sánchez, J. J.; Müller, A. J. Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1738–1750.

    Article  CAS  Google Scholar 

  63. Galante, M. J.; Mandelkern, L.; Alamo, R. G.; Lehtinen, A.; Paukker, R. Crystallization kinetics of metallocene type polypropylenes. J. Therm. Anal. 1996, 47, 913–929.

    Article  CAS  Google Scholar 

  64. Hay, J. N.; Mills, P. J. The use of differential scanning calorimetry to study polymer crystallization kinetics. Polymer 1982, 23, 1380–1384.

    Article  CAS  Google Scholar 

  65. Hay, J. N.; Booth, A. The effect of a secondary process on the course of polymer crystallisation. Brit. Polym. J. 1972, 4, 19–26.

    Article  CAS  Google Scholar 

  66. Wang, B.; Utzeri, R.; Castellano, M.; Stagnaro, P.; Müller, A. J.; Cavallo, D. Heterogeneous nucleation and self-nucleation of isotactic polypropylene microdroplets in immiscible blends: from nucleation to growth-dominated crystallization. Macromolecules 2020, 53, 5980–5991.

    Article  CAS  Google Scholar 

  67. Androsch, R.; Di Lorenzo, M. L. Crystal nucleation in glassy poly(L-lactic acid). Macromolecules 2013, 46, 6048–6056.

    Article  CAS  Google Scholar 

  68. Androsch, R.; Schick, C.; Di Lorenzo, M. L., Kinetics of Nucleation and Growth of Crystals of Poly(l-lactic acid). In Synthesis, Structure and Properties of Poly(lactic acid), Di Lorenzo, M. L., Androsch, R., Eds. Springer International Publishing: Cham, 2018; pp. 235–272.

    Google Scholar 

  69. Müller, A. J.; Ávila, M.; Saenz, G.; Salazar, J., CHAPTER 3 Crystallization of PLA-based Materials. In Poly(lactic acid) Science and Technology: Processing, Properties, Additives and Applications, The Royal Society of Chemistry: 2015; pp. 66–98.

  70. Ruiz, M. B.; Pérez-Camargo, R. A.; López, J. V.; Penott-Chang, E.; Múgica, A.; Coulembier, O.; Müller, A. J. Accelerating the crystallization kinetics of linear polylactides by adding cyclic poly (L-lactide): Nucleation, plasticization and topological effects. Inter. J. Biol. Macromol. 2021, 186, 255–267.

    Article  CAS  Google Scholar 

  71. OriginLab Crystallization Fit. https://www.originlab.com/fileExchange/details.aspx?fid=597 (March 09, 2021)

  72. Kholodovych, V.; Welsh, W. J., Densities of Amorphous and Crystalline Polymers. In Physical Properties of Polymers Handbook, Mark, J. E., Ed. Springer New York: New York, NY, 2007; pp. 611–617.

    Chapter  Google Scholar 

  73. Trujillo, M.; Arnal, M. L.; Müller, A. J.; Mujica, M. A.; Urbina de Navarro, C.; Ruelle, B.; Dubois, P. Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone). Polymer 2012, 53, 832–841.

    Article  CAS  Google Scholar 

  74. Pérez, R. A.; Córdova, M. E.; López, J. V.; Hoskins, J. N.; Zhang, B.; Grayson, S. M.; Müller, A. J. Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s. React. Funct. Polym. 2014, 80, 71–82.

    Article  CAS  Google Scholar 

  75. Pérez, R. A.; López, J. V.; Hoskins, J. N.; Zhang, B.; Grayson, S. M.; Casas, M. T.; Puiggalí, J.; Müller, A. J. Nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear poly(ε-caprolactones). Macromolecules 2014, 47, 3553–3566.

    Article  CAS  Google Scholar 

  76. Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T. Structural formation of poly (ethylene terephthalate) during the induction period of crystallization: 1. Ordered structure appearing before crystal nucleation. Polymer 1992, 33, 4451–4456.

    Article  CAS  Google Scholar 

  77. Imai, M.; Mori, K.; Mizukami, T.; Kaji, K.; Kanaya, T. Structural formation of poly(ethylene terephthalate) during the induction period of crystallization: 2. Kinetic analysis based on the theories of phase separation. Polymer 1992, 33, 4457–4462.

    Article  CAS  Google Scholar 

  78. Safari, M.; Mugica, A.; Zubitur, M.; Martínez de Ilarduya, A.; Muñoz-Guerra, S.; Müller, A. J. Controlling the isothermal crystallization of isodimorphic PBS-ran-PCL random copolymers by varying composition and supercooling. Polymers 2020, 12, 17.

    Article  CAS  Google Scholar 

  79. Córdova, M. E.; Lorenzo, A. T.; Müller, A. J.; Gani, L.; Tencé-Girault, S.; Leibler, L. The influence of blend morphology (co-continuous or sub-micrometer droplets dispersions) on the nucleation and crystallization kinetics of double crystalline polyethylene/polyamide blends prepared by reactive extrusion. Macromol. Chem. Phys. 2011, 212, 1335–1350.

    Article  CAS  Google Scholar 

  80. Müller, A. J.; Arnal, M. L.; Balsamo, V., Crystallization in Block Copolymers with More than One Crystallizable Block. In Progress in Understanding of Polymer Crystallization, Reiter, G., Strobl, G. R., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp. 229–259.

    Chapter  Google Scholar 

  81. Shi, G.; Wang, Z.; Wang, M.; Liu, G.; Cavallo, D.; Müller, A. J.; Wang, D. Crystallization, orientation, and solid-solid crystal transition of polybutene-1 confined within nanoporous alumina. Macromolecules 2020, 53, 6510–6518.

    Article  CAS  Google Scholar 

  82. Liu, G.; Müller, A. J.; Wang, D. Confined crystallization of polymers within nanopores. Acc. Chem. Res. 2021, 54, 3028–3038.

    Article  CAS  PubMed  Google Scholar 

  83. Sangroniz, L.; Wang, B.; Su, Y.; Liu, G.; Cavallo, D.; Wang, D.; Müller, A. J. Fractionated crystallization in semicrystalline polymers. Prog. Polym. Sci. 2021, 115, 101376.

    Article  CAS  Google Scholar 

  84. Hoffman, J. D.; Weeks, J. J. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J. Res. Natl. Bur. Stand. Sect. A 1962, 66A, 13–28.

    Article  CAS  Google Scholar 

  85. Alamo, R. G.; Viers, B. D.; Mandelkern, L. A re-examination of the relation between the melting temperature and the crystallization temperature: linear polyethylene. Macromolecules 1995, 28, 3205–3213.

    Article  CAS  Google Scholar 

  86. Toda, A.; Taguchi, K.; Nozaki, K. Gibbs-Thomson, thermal Gibbs-Thomson, and Hoffman-Weeks plots of polyethylene crystals examined by fast-scan calorimetry and small-angle X-ray scattering. Cryst. Growth Des. 2019, 19, 2493–2502.

    Article  CAS  Google Scholar 

  87. Müller, A. J.; Arnal, M. L. Thermal fractionation of polymers. Prog. Polym. Sci. 2005, 30, 559–603.

    Article  CAS  Google Scholar 

  88. Müller, A. J.; Hernández, Z. H.; Arnal, M. L.; Sánchez, J. J. Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym. Bull. 1997, 39, 465–472.

    Article  Google Scholar 

  89. Arandia, I.; Mugica, A.; Zubitur, M.; Iturrospe, A.; Arbe, A.; Liu, G.; Wang, D.; Mincheva, R.; Dubois, P.; Müller, A. J. Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 2346–2358.

    Article  CAS  Google Scholar 

  90. Van Krevelen, D. W., CHAPTER 5—Calorimetric Properties. In Properties of Polymers (Third Edition), Van Krevelen, D. W., Ed. Elsevier: Amsterdam, 1997; pp. 109–127.

    Chapter  Google Scholar 

  91. Yamada, K.; Hikosaka, M.; Toda, A.; Yamazaki, S.; Tagashira, K. Equilibrium melting temperature of isotactic polypropylene with high tacticity: 1. Determination by differential scanning calorimetry. Macromolecules 2003, 36, 4790–4801.

    Article  CAS  Google Scholar 

  92. Cheng, S. Z. D.; Janimak, J. J.; Zhang, A.; Cheng, H. N. Regime transitions in fractions of isotactic polypropylene. Macromolecules 1990, 23, 298–303.

    Article  CAS  Google Scholar 

  93. Pawlak, A.; Galeski, A., Crystallization of Polypropylene. In Polypropylene Handbook: Morphology, Blends and Composites, Karger-Kocsis, J., Bárány, T., Eds. Springer International Publishing: Cham, 2019; pp. 185–242.

    Chapter  Google Scholar 

  94. Clark, E. J.; Hoffman, J. D. Regime III crystallization in polypropylene. Macromolecules 1984, 17, 878–885.

    Article  CAS  Google Scholar 

  95. Kang, J.; Li, J.; Chen, S.; Peng, H.; Wang, B.; Cao, Y.; Li, H.; Chen, J.; Gai, J.; Yang, F.; Xiang, M. Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J. Appl. Polym. Sci. 2013, 129, 2663–2670.

    Article  CAS  Google Scholar 

  96. Point, J. J.; Dosière, M. Crystal growth rate as a function of molecular weight in polyethylene crystallized from the melt: an evaluation of the kinetic theory of polymer crystallization. Polymer 1989, 30, 2292–2296.

    Article  CAS  Google Scholar 

  97. Feng, Y.; Jin, X. Effect of self-nucleation on crystallization and melting behavior of polypropylene and its copolymers. J. Appl. Polym. Sci. 1999, 72, 1559–1564.

    Article  CAS  Google Scholar 

  98. Carmeli, E.; Fenni, S. E.; Caputo, M. R.; Müller, A. J.; Tranchida, D.; Cavallo, D. Surface nucleation of dispersed polyethylene droplets in immiscible blends revealed by polypropylene matrix self-nucleation. Macromolecules 2021, 54, 9100–9112.

    Article  CAS  Google Scholar 

  99. Habel, C.; Maiz, J.; Olmedo-Martínez, J. L.; López, J. V.; Breu, J.; Müller, A. J. Competition between nucleation and confinement in the crystallization of poly(ethylene glycol)/large aspect ratio hectorite nanocomposites. Polymer 2020, 202, 122734.

    Article  CAS  Google Scholar 

  100. Wang, H.; Keum, J. K.; Hiltner, A.; Baer, E. Crystallization kinetics of poly(ethylene oxide) in confined nanolayers. Macromolecules 2010, 43, 3359–3364.

    Article  CAS  Google Scholar 

  101. Wen, X.; Su, Y.; Shui, Y.; Zhao, W.; Müller, A. J.; Wang, D. Correlation between grafting density and confined crystallization behavior of poly(ethylene glycol) grafted to silica. Macromolecules 2019, 52, 1505–1516.

    Article  CAS  Google Scholar 

  102. Palacios, J. K.; Mugica, A.; Zubitur, M.; Müller, A. J., Chapter 6—Crystallization and Morphology of Block Copolymers and Terpolymers With More Than One Crystallizable Block. In Crystallization in Multiphase Polymer Systems, Thomas, S., Arif P, M., Gowd, E. B., Kalarikkal, N., Eds. Elsevier: 2018; pp. 123–180.

  103. Müller, A. J.; Michell, R. M., Differential scanning calorimetry of polymers. In Polymer Morphology, 2016; pp. 72–99.

  104. Müller, A. J.; Arnal, M. L.; Lorenzo, A. T., Crystallization in nano-confined polymeric systems. In Handbook of Polymer Crystallization, 2013; pp. 347–378.

  105. Liu, G.; Shi, G.; Wang, D. Research Progress on Polymer Crystallization Confined within Nano-porous AAO Templates. Acta Polymerica Sinica (in Chinese), 2020, 51, 501–516.

    CAS  Google Scholar 

  106. Castillo, R. V.; Müller, A. J. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog. Polym. Sci. 2009, 34, 516–560.

    Article  CAS  Google Scholar 

  107. Androsch, R.; Rhoades, A. M.; Stolte, I.; Schick, C. Density of heterogeneous and homogeneous crystal nuclei in poly(butylene terephthalate). Eur. Polym. J. 2015, 66, 180–189.

    Article  CAS  Google Scholar 

  108. Wang, M.; Li, J.; Shi, G.; Liu, G.; Müller, A. J.; Wang, D. Suppression of the self-nucleation effect of semicrystalline polymers by confinement. Macromolecules 2021, 54, 3810–3821.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the the National Natural Science Foundation of China (Nos. 21922308 and 51820105005) and the National Key R&D Program of China (No. 2017YFE0117800). We would also like to acknowledge the financial support from the BIODEST project; this project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778092. The funding of MICINN (Spain) through grant PID2020-113045GB-C21 is gratefully acknowledged. G. L. is grateful to the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. Y201908). Mr. Ming Wang is thanked for preparing the AAO infiltrated sample. Dr. Maryam Safari is thanked for the fruitful discussions and data related to random copolymers, and Mr. Sam Fang and Dr. Easwar R. Iyer from OriginLab Corporation for their help transforming our plug-in (Ref. [9]) into an updated APP (Ref. [71]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ming Liu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Camargo, R.A., Liu, GM., Wang, DJ. et al. Experimental and Data Fitting Guidelines for the Determination of Polymer Crystallization Kinetics. Chin J Polym Sci 40, 658–691 (2022). https://doi.org/10.1007/s10118-022-2724-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2724-2

Keywords

Navigation