Skip to main content
Log in

Thermal behavior of a sol–gel system containing aniline and organic phosphonates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Samples of an organic–inorganic hybrid were prepared by solvolysis and polycondensation in formic acid of tetraethoxysilane and diethylbenzyl phosphonate, simultaneous with the oxidative polymerization of aniline. The thermal behavior of the samples in dynamic air atmosphere and non-isothermal conditions was determined by a coupled thermogravimetric/evolved gas analysis. Two significant thermal events were established: the elimination from the polymeric matrix of low mass molecules, respectively the thermooxidative degradation of the organic part of the matrix. The kinetic analysis was performed with the Flynn-Wall-Ozawa, Friedman and modified Non-Parametric-Kinetic methods. Only the last one allowed an objective analysis of the first process as a process of two simultaneous thermally induced phenomena with the kinetic functions of the type αm(1 − α)n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Judeinstein P, Sanchez C. Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem. 1996;6:511–26.

    Article  CAS  Google Scholar 

  2. Loy DA, Shea KJ. Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chem Rev. 1995;95:1431–42.

    Article  CAS  Google Scholar 

  3. Sanchez C, Ribot F, Lebeau B. Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J Mater Chem. 1999;9:35–44.

    Article  CAS  Google Scholar 

  4. Judeinstein P, Livage I, Zarudiansky JA, Rose R. An “all gel” electrochromic device. Solid State Ionics. 1988;28–30:1722–5.

    Article  Google Scholar 

  5. Mutin PH, Guerrero G, Vioux A. Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. C.R. Chimie. 2003;6:1153–64.

    CAS  Google Scholar 

  6. Matsunaga T, Doifuku H, Nakajima T, Kawagoe T. Development of polyaniline-lithium secondary battery. Polym Adv Technol. 1990;1:33–9.

    Article  CAS  Google Scholar 

  7. Duek EAR, De Paoli M-A, Mastragostino M. An electrochromic device based on polyaniline and prussian blue. Adv Mater. 1992;4:287–91.

    Article  CAS  Google Scholar 

  8. Santhiyanarayanan S, Muthukrishnan S, Venkstachari G, Trivedi DC. Corrosion protection of steel by polyaniline (PANI) pigmented paint coating. Prog Org Coat. 2005;53:297–301.

    Article  Google Scholar 

  9. Boonstra AH, Bernardes INM. The dependence of the gelation time on the hydrolysis time in a two-step SiO2 sol-gel process. J Non Cryst Solids. 1988;105:207–13.

    Article  CAS  Google Scholar 

  10. Mattes BR, Knobble ET, Fuqua PD, Nishida F, Chang EW, Pierce BM. et al. Polyaniline sol-gels and their third-order nonlinear optical effects. Synth Met. 1991;43:3183–7.

    Article  CAS  Google Scholar 

  11. de Azevedo WM, Brondani DJ. Formic acid an efficient solvent to prepare polyaniline/silicate glass composite using sol–gel technique. J Non Cryst Solids. 2001;296:224–9.

    Article  Google Scholar 

  12. Ita M, Uchida Y, Matsui K. Polyaniline/silica hybrid composite gels prepared by the sol-gel process. J Sol-Gel Sci Technol. 2003;26:479–82.

    Article  CAS  Google Scholar 

  13. Panitz IC, Wokaum A. Characterization of the sol-gel process using raman spectroscopy organically modified silica gels prepared via the formic acid-alkoxide route. J Sol-Gel Sci Technol. 1997;9:251–63.

    Google Scholar 

  14. Sharp GK. A two-component, non-aqueous route to silica gel. J Sol-Gel Sci Technol. 1994;2:35–41.

    Article  CAS  Google Scholar 

  15. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, et al. Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Google Scholar 

  16. Vlase T, Doca N, Vlase G, Bolcu C, Borcan F. Kinetics of non-isothermal decomposition of three IRGANOX-type antioxidants. J Therm Anal Calorim. 2008;92(1):15–8.

    Article  CAS  Google Scholar 

  17. Flynn IH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  18. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  19. Friedman HL. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry: application to a phenolic resin. J Polym Sci. 1965;6C:183–95.

    Google Scholar 

  20. Serra R, Nomen R, Sempere J. The non-parametric kinetics a new method for the kinetic study of thermoanalytical data. J Thermal Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  21. Sempere J, Nomen R, Serra R. Progress in non-parametric kinetics. J Thermal Anal Calorim. 1999;56:843–9.

    Article  CAS  Google Scholar 

  22. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Thermal Anal Calorim. 2007;88(3):631–5.

    Article  CAS  Google Scholar 

  23. Vlase T, Vlase G, Doca N, Bolcu C. Comparative kinetic analysis with NPK method. J Thermal Anal Calorim. 2005;80:59–64.

    Article  CAS  Google Scholar 

  24. Vlase T, Vlase G, Doca N. Thermal stability of food additives of glutamate and benzoate type. J Thermal Anal Calorim. 2005;80:425–8.

    Article  CAS  Google Scholar 

  25. Vlase T, Vlase G, Doca N. Kinetics of thermal decomposition of alkaline phosphates. J Thermal Anal Calorim. 2005;80:207–10.

    Article  CAS  Google Scholar 

  26. Ioiţescu A, Vlase G, Vlase T, Doca N. Kinetics of decomposition of different acid calcium phosphates. J Thermal Anal Calorim. 2007;88(1):121–5.

    Article  Google Scholar 

  27. Vlase T, Vlase G, Modra D, Doca N. Thermal behaviour of some industrial and food dyes. J Thermal Anal Calorim. 2007;88(2):389–93.

    Article  CAS  Google Scholar 

  28. Vlase G, Vlase T, Doca N. Thermal behavior of some phenitoine pharmaceuticals. J Thermal Anal Calorim. 2008;92(1):259–62.

    Article  CAS  Google Scholar 

  29. Birta N, Doca N, Vlase G, Vlase T. Kinetic of sorbitol decomposition under non-isothermal conditions. J Thermal Anal Calorim. 2008;92(2):635–8.

    Article  CAS  Google Scholar 

  30. Doca N, Vlase G, Vlase T, Ilia G. Thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates under non-isothermal condition. J Thermal Anal Calorim. 2008;94(2):441–5.

    Article  CAS  Google Scholar 

  31. Wall ME. ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis, vol. 9. MA: Kluwer-Norwel; 2003; p. 91-109. LANL LA-UR-02.

  32. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Vlase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlase, G., Vlase, T., Doca, N. et al. Thermal behavior of a sol–gel system containing aniline and organic phosphonates. J Therm Anal Calorim 97, 473–478 (2009). https://doi.org/10.1007/s10973-009-0216-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-009-0216-z

Keywords

Navigation