Skip to main content
Log in

Thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates under non-isothermal condition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates was studied using two different experimental strategies: the coupled TG-EGA (FTIR) technique by decomposition in nitrogen respectively air, and the kinetic analysis of TG data obtained in dynamic air atmosphere at four heating rates. In nitrogen two decomposition steps were observed: the loss of crystallization water, respectively the decomposition of the phenyl-vinyl radical. In air, the same dehydration was observed as the first step, but the second one is a thermooxidation of the organic radical with formation of the pyrophosphoric anion.

The kinetic analysis of the TG non-isothermal data was performed by the isoconversional methods suggested by Friedman and Flynn, Wall and Ozawa, as well as by the non-parametric (Sempere-Nomen) method. All processes put in evidence in TG curves exhibit strong changes of the activation energy values with the conversion degree, which mean that these processes are complex ones. Assuming that each of these processes consists in two steps, the application of non-parametric method leads to average values of the activation energy close to the average values of this parameter obtained by isoconversional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Clearfield, Progres in Inorganic Chemistry, K. D. Karbin, Ed., John Wiley and Sons, NY 1998, Vol. 47, p. 371.

    Google Scholar 

  2. B. Bujoli, P. Palvadeau and J. Rouxel, Chem. Mater., 2 (1990) 582.

    Article  CAS  Google Scholar 

  3. D. M. Poojary, Y. P. Zhang, B. Zhang and A. Clearfield, Chem. Mater., 7 (1995) 822.

    Article  CAS  Google Scholar 

  4. D. Grohol, M. A. Subramanian, M. A. Poojary and A. Clearfield, Inorg. Chem., 35 (1996) 5264.

    Article  CAS  Google Scholar 

  5. G. Cao, H. Lee, V. M. Lynch, I. S. Swinnea and T. E. Mallouk, Inorg. Chem., 27 (1988) 2781.

    Article  CAS  Google Scholar 

  6. G. Cao, H. Lee, V. M. Lynch, I. S. Swinnea and T. E. Mallouk, Inorg. Chem., 29 (1990) 2112.

    Article  CAS  Google Scholar 

  7. A. Cabeza, M. A. G. Aranda, S. Bruque, M. D. Poojary, A. Clearfield and I. Sanz, Inorg. Chem., 37 (1998) 4168.

    Article  CAS  Google Scholar 

  8. I. Le. Bideau, C. Payen, P. Palvadeau and B. Buyoli, Inorg. Chem., 33 (1994) 4885.

    Article  Google Scholar 

  9. S. Drumel, P. Jonvier, D. Deniaud and B. Buyoli, I. Chem. Soc., Chem. Commun., (1995) 1051.

  10. R. M. Silverstein, G. Clayton Basster and T. Morrell, ’Spectrometric Identification of the Compounds’, 5th Ed., John Wiley, 1995.

  11. I. H. Flynn and L. A. Wall, Polym. Lett., 4 (1966) 323.

    Article  CAS  Google Scholar 

  12. T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.

    Article  CAS  Google Scholar 

  13. H. L. Friedman, J. Polym. Sci., 6C (1965) 183.

    Google Scholar 

  14. R. Serra, R. Nomen and J. Sempere, J. Therm. Anal. Cal., 52 (1998) 933.

    Article  CAS  Google Scholar 

  15. R. Serra, J. Sempere and R. Nomen, Thermochim. Acta, 316 (1998) 37.

    Article  CAS  Google Scholar 

  16. J. Sempere, R. Nomen and R. Serra, J. Therm. Anal. Cal., 56 (1999) 843.

    Article  CAS  Google Scholar 

  17. P. Budrugeac, D. Homentcovschi and E. Segal, J. Therm. Anal. Cal., 66 (2001) 557.

    Article  CAS  Google Scholar 

  18. P. Budrugeac and E. Segal, Int. J. Chem. Kinet., 33 (2001) 564.

    Article  CAS  Google Scholar 

  19. T. Vlase, G. Vlase, N. Doca and C. Bolcu, J. Therm. Anal. Cal., 80 (2005) 59.

    Article  CAS  Google Scholar 

  20. T. Vlase, G. Vlase, M. Doca and N. Doca, J. Therm. Anal. Cal., 80 (2005) 207.

    Article  CAS  Google Scholar 

  21. T. Vlase, G. Vlase and N. Doca, J. Therm. Anal. Cal., 80 (2005) 425.

    Article  CAS  Google Scholar 

  22. T. Vlase, G. Vlase, N. Birta and N. Doca, J. Therm. Anal. Cal., 88 (2007) 631.

    Article  CAS  Google Scholar 

  23. M. E. Wall, Singular value decomposition and principal component analysis, A practical approach to microarray data analysis, 9. 91-109, Kluwer-Norwel, MA (2003). LANL LA-UR-02.

  24. J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Doca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doca, N., Vlase, G., Vlase, T. et al. Thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates under non-isothermal condition. J Therm Anal Calorim 94, 441–445 (2008). https://doi.org/10.1007/s10973-008-9347-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9347-x

Keywords

Navigation