Skip to main content
Log in

Thermal decomposition behavior of precursors for yttrium aluminum garnet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Precursor powders for yttrium aluminum garnet (YAG) were synthesized by solution combustion reactions (nitrate–glycine reaction with stoichiometric and sub-stoichiometric amount of fuel) and simple decomposition of nitrate solution. The TG-DTA, FTIR and XRD analyses of the precursors and the typical heat-treated samples were carried out to understand the processes occurring at various stages during heating to obtain phase pure YAG. Precursors from all the reactions exhibited dehydration of adsorbed moisture in the temperature range of 30 to 300°C. The precursor from nitrate–glycine reaction with stoichiometric amount of fuel (precursor- A) contained entrapped oxides of carbon (CO and CO2) and a carbonaceous contaminant. It exhibited burning away of the carbonaceous contaminant and crystallization to pure YAG accompanied by loss of oxides of carbon in the temperature ranges of 400 to 600 and 880 to 1050°C. The precursor from simple decomposition of nitrates (precursor-B) exhibited denitration cum dehydroxylation and crystallization in the temperature ranges of 300 to 600 and 850 to 1050°C. The precursor from nitrate–glycine reaction with sub-stoichiometric amount of fuel (precursor-C) contained entrapped carbon dioxide and exhibited its release during crystallization in the temperature range of 850 to 1050°C. This study established that, in case of metal nitrate–glycine combustion reactions, crystalline YAG formation occurs from an amorphous compound with entrapped oxides of carbon. In case of simple decomposition of metal nitrates, formation of crystalline YAG occurs from an amorphous oxide intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Nyman J Carusa MJH Smith (1997) J. Am. Ceram. Soc. 80, 5 1231

    Google Scholar 

  2. G Gowda (1986) J. Mater. Sci. Lett. 5 1029 Occurrence Handle10.1007/BF01730273 Occurrence Handle1:CAS:528:DyaL28XlvFKjur8%3D

    Article  CAS  Google Scholar 

  3. Y Yamaguchi K Takeoka A Hayashida (1991) J. Mater. Sci. Letts. 10 101 Occurrence Handle10.1007/BF00721921 Occurrence Handle1:CAS:528:DyaK3MXoslajtA%3D%3D

    Article  CAS  Google Scholar 

  4. Y Liu Z-F Zhang B King J Halloran RM Laine (1996) J. Am. Ceram. Soc. 79 385 Occurrence Handle10.1111/j.1151-2916.1996.tb08133.x Occurrence Handle1:CAS:528:DyaK28Xht1Sitb4%3D

    Article  CAS  Google Scholar 

  5. KR Han HJ Koo CS Lim (1999) J. Am. Ceram. Soc. 82 1598 Occurrence Handle1:CAS:528:DyaK1MXktVyrsbc%3D Occurrence Handle10.1111/j.1151-2916.1999.tb01966.x

    Article  CAS  Google Scholar 

  6. Q-M Lu W-S Dong H-J Wang X-K Wang (2002) J. Am. Ceram. Soc. 85 490 Occurrence Handle1:CAS:528:DC%2BD38Xht1CksLY%3D

    CAS  Google Scholar 

  7. DJ Sordellet M Akine ML Panchula Y Han (1994) J. Eur. Ceram. Soc. 14 123 Occurrence Handle10.1016/0955-2219(94)90100-7

    Article  Google Scholar 

  8. S Ramanathan SK Roy PV Ravindran (2000) Trans. Ind. Ceram. Soc. 59 12 Occurrence Handle1:CAS:528:DC%2BD3cXksVKkurY%3D

    CAS  Google Scholar 

  9. N Matsushita N Tsuchiya K Nakatsuka T Yanagitani (1999) J. Am. Ceram. Soc. 82 81

    Google Scholar 

  10. J-G Li T Ikegami J-H Lee T Mori (2000) J. Mater. Res. 15 514

    Google Scholar 

  11. NJ Hes GD Maupin LA Chick DS Sunberg DE McCreedy TR Armstrong (1994) J. Mater. Sci. 29 1873 Occurrence Handle10.1007/BF00351307

    Article  Google Scholar 

  12. JJ Kinsley K Suresh KC Patil (1990) J. Solid State Chem. 87 435 Occurrence Handle10.1016/0022-4596(90)90239-T

    Article  Google Scholar 

  13. LE Shea J McKittrick OA Lopez (1996) J. Am. Ceram. Soc. 79 3257 Occurrence Handle10.1111/j.1151-2916.1996.tb08103.x Occurrence Handle1:CAS:528:DyaK2sXitlSqsQ%3D%3D

    Article  CAS  Google Scholar 

  14. DR Messier GE Gazza (1970) Am. Ceram. Soc. Bull. 51 697

    Google Scholar 

  15. MB Kakade S Ramanathan PV Ravindran (2003) J. Alloys Compd. 350 123 Occurrence Handle10.1016/S0925-8388(02)00951-9 Occurrence Handle1:CAS:528:DC%2BD3sXltFOksg%3D%3D

    Article  CAS  Google Scholar 

  16. MB Kakade S Ramanathan SK Roy (2002) J. Mater. Sci. Lett. 21 927 Occurrence Handle10.1023/A:1016017521702 Occurrence Handle1:CAS:528:DC%2BD38XkvVCms70%3D

    Article  CAS  Google Scholar 

  17. S Ramanathan MB Kakade SK Roy KK Kutty (2003) Ceram. Int. 29 477 Occurrence Handle10.1016/S0272-8842(02)00190-6 Occurrence Handle1:CAS:528:DC%2BD3sXktVehtrw%3D

    Article  CAS  Google Scholar 

  18. LR Pederson GD Maupin WJ Weber DJ McReady RW Stephens (1991) Mater. Lett. 10 437 Occurrence Handle10.1016/0167-577X(91)90235-X Occurrence Handle1:CAS:528:DyaK3MXhvFOnurc%3D

    Article  CAS  Google Scholar 

  19. R Campostrini M Ischia L Palmisano (2004) J. Therm. Anal. Cal. 75 13 Occurrence Handle10.1023/B:JTAN.0000017324.05515.b9 Occurrence Handle1:CAS:528:DC%2BD2cXhsFaisLk%3D

    Article  CAS  Google Scholar 

  20. E Horváth J Kristóf RL Frost N Heider V Végvölgyi (2004) J. Therm. Anal. Cal. 78 687 Occurrence Handle10.1023/B:JTAN.0000046128.84995.77

    Article  Google Scholar 

  21. YS Malghe AV Gurjar SR Dharwadkar (2004) J. Therm. Anal. Cal. 78 739 Occurrence Handle1:CAS:528:DC%2BD2cXhtVGmt7nI

    CAS  Google Scholar 

  22. HE Zorel Jr MS Crespi CA Ribeiro (2004) J. Therm. Anal. Cal. 75 545 Occurrence Handle10.1023/B:JTAN.0000027144.59771.53

    Article  Google Scholar 

  23. BS Randhawa KJ Sweety Manpreet Kaur JM Greneche (2004) J. Therm. Anal. Cal. 75 101 Occurrence Handle10.1023/B:JTAN.0000017333.38139.ff Occurrence Handle1:CAS:528:DC%2BD2cXhsFaisL4%3D

    Article  CAS  Google Scholar 

  24. NN Mallikarjuna B Govindaraj A Lagashetty A Venkatraman (2003) J. Therm. Anal. Cal. 71 915 Occurrence Handle10.1023/A:1023342713483 Occurrence Handle1:CAS:528:DC%2BD3sXjvVylu70%3D

    Article  CAS  Google Scholar 

  25. NN Mallikarjuna A Lagashetty A Venkatraman (2003) J. Therm. Anal. Cal. 74 819 Occurrence Handle10.1023/B:JTAN.0000011014.73830.d1 Occurrence Handle1:CAS:528:DC%2BD2cXhtFOktg%3D%3D

    Article  CAS  Google Scholar 

  26. AC Tas PJ Majewski F Aldinger (2000) J. Am. Ceram. Soc. 83 2954 Occurrence Handle1:CAS:528:DC%2BD3MXpsF2k Occurrence Handle10.1111/j.1151-2916.2000.tb01666.x

    Article  CAS  Google Scholar 

  27. CD Vietch (1991) J. Mater. Sci. 26 6527

    Google Scholar 

  28. LM Seaverson SQ Luo PL Chien JF McClelland (1986) J. Am. Ceram. Soc. 69 423 Occurrence Handle10.1111/j.1151-2916.1986.tb04773.x Occurrence Handle1:CAS:528:DyaL28Xit12itb8%3D

    Article  CAS  Google Scholar 

  29. P Apte H Burke H Pickup (1992) J. Mater. Res. 7 706 Occurrence Handle1:CAS:528:DyaK38XisVOhsLo%3D

    CAS  Google Scholar 

  30. Q Lu W Dong H Wang X Wang (2002) J. Am. Ceram. Soc. 85 490 Occurrence Handle1:CAS:528:DC%2BD38Xht1CksLY%3D

    CAS  Google Scholar 

  31. TV Chandrasekhar Rao VC Sahni PV Ravindran L Varshney (1996) Solid State Communications 98 73 Occurrence Handle10.1016/0038-1098(95)00763-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan S..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanathan, S., Kakade, M.B., Ravindran, P.V. et al. Thermal decomposition behavior of precursors for yttrium aluminum garnet. J Therm Anal Calorim 84, 511–519 (2006). https://doi.org/10.1007/s10973-005-7803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7803-4

Keywords

Navigation