Skip to main content
Log in

Study on electrical transport and relaxation process of ceramic-based nanocomposites of (1−x) BiFeO3-xCoFe2O4 (x = 0.0, 0.2, 0.5, 0.8, 1.0)

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The multiferroic nanocomposite samples [(1−x) BiFeO3-xCoFe2O4 with x = 0.0, 0.2, 0.5, 0.8, and 1.0] were synthesized by the hybrid processing method. The presence of both ferroelectric and ferromagnetic phases in the samples was confirmed by the X-ray diffraction. The lattice distortion of bismuth ferrite (BFO) occurs with the incorporation of cobalt ferrite (CFO) in the samples. From studies of the complex modulus and impedance spectroscopy, both grains and grain boundaries have a significant contribution to the electrical response of the nanocomposite samples. All samples show depressed semi-circular arcs and non-Debye type relaxation behavior. The AC conductivity was analyzed by using Jonscher’s Universal power law, σac = σdc + s. The correlated barrier hopping (CBH) model is the most suitable conduction mechanism to explain the transport properties of the samples. The increase in AC conductivity from 1.208 × 10−4 S m−1 to 1.370 × 10−3 S m−1 with increasing ferromagnetic phase was explained by effective potential barrier height (WM), characteristic relaxation time (τ0) and hopping distance (Rw). The presence of the different slopes in the Arrhenius plots suggests the presence of different conduction processes in the nanocomposites. The results are analyzed in light of the literature.

Graphical abstract

Highlights

  • Synthesis of BiFeO3-xCoFe2O4 nanocomposites by hybrid processing method.

  • Investigation of frequency and temperature dependence of dielectric properties.

  • Non-Debye type relaxation behavior of the nanocomposites.

  • NTCR behavior of the nanocomposites.

  • Correlated Barrier Hopping (CBH) model explains the conduction process in nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  CAS  Google Scholar 

  2. Coondoo I, Panwar N, Bdikin I, Puli VS, Katiyar RS, Kholkin AL (2012) Structural, morphological and piezoresponse studies of Pr and Sc co-substituted BiFeO3 ceramics. J Phys D Appl Phys 45:055302

    Article  CAS  Google Scholar 

  3. Siwach PK, Singh HK, Singh J, Srivastava ON (2007) Anomalous ferromagnetism in spray pyrolysis deposited multiferroic BiFeO3 films. Appl Phys Lett 91:122503

    Article  CAS  Google Scholar 

  4. Khomchenko VA, Kopcewicz M, Lopes AML, Pogorelov YG, Araujo JP, Vieira JM, Kholkin AL (2008) Intrinsic nature of the magnetization enhancement in heterovalently doped Bi1-xAxFeO3 (A=Ca, Sr, Pb, Ba) multiferroics. J Phys D, Appl Phys 41:102003

    Article  CAS  Google Scholar 

  5. Woodward DI, Reaney IM, Eitel RE, Randall CA (2003) Crystal and domain structure of the BiFeO3-PbTiO3 solid solution. J Appl Phys 94:3313

    Article  CAS  Google Scholar 

  6. Comyn TP, Stevenson T, Al-Jawad M, Andre G, Bell AJ, Cywinski R (2011) Antiferromagnetic order in tetragonal bismuth ferrite-lead titanate. J Magn Magn Mater 323:2533–2535

    Article  CAS  Google Scholar 

  7. Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    Article  CAS  Google Scholar 

  8. Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29

    Article  CAS  Google Scholar 

  9. Ravindran P, Vidya R, Kjekshus A, Fjellvag H, Eriksson O (2006) Theoretical investigation of magnetoelectric behavior in BiFeO3. Phys Rev B 74:224412

    Article  CAS  Google Scholar 

  10. Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB, Pan XQ (2006) Substitution-induced phase transition and enhanced multiferroic properties of Bi1-xLaxFeO3 ceramics. Appl Phys Lett 88:162901

    Article  CAS  Google Scholar 

  11. Wang DH, Goh WC, Ning M, Ong CK (2006) Effect of Ba doping on magnetic and magneto-electric properties of BiFeO3 at room temperature. Appl Phys Lett 88:212907

    Article  CAS  Google Scholar 

  12. Singh HH, Sharma HB (2019) Enhanced electrical and magnetic properties of samarium (Sm) doped multiferroic bismuth ferrite (BFO) ceramics. Integr Ferroelectr 203:120–132

    Article  CAS  Google Scholar 

  13. Jena AK, Satapathy S, Mohanty J (2018) Magnetic and dielectric response in yttrium (Y)-manganese (Mn) substituted multiferroic Bi1-xYxFe1-yMnyOy (x=y=0; x=0.03, 0.06, 0.12, y=0.05) ceramics. J Appl Phys 124:174103

    Article  CAS  Google Scholar 

  14. Sahu T, Behera B (2018) Dielectric and electrical study along with the evidence of small polaron tunneling in Gd doped bismuth ferrite lead titanate composites. J Mater Sci Mater Electron 29:7412–7424

    Article  CAS  Google Scholar 

  15. Dabas S, Chaudhary P, Kumar M, Shankar S, Thakur OP (2019) Structural, microstructural and multiferroic properties of BiFeO3-CoFe2O4 composites. J Mater Sci Mater Electron 30:2837–2846

    Article  CAS  Google Scholar 

  16. Dhaba Lakshmi B, Pratap K, Parvatheeswara Rao B, Rao PSVS (2016) Impedance spectroscopy and dielectric properties of multiferroic BiFeO3/Bi0.95Mn0.05FeO3-Ni0.5Zn0.5Fe2O4 composites. Ceram Int 42:2186–2197

    Article  CAS  Google Scholar 

  17. Sahu T, Behera B (2017) Investigation on structural, dielectric and ferroelectric properties of samarium-substituted BiFeO3-PbTiO3 composites. J Adv Dielectr 7:1750001

    Article  CAS  Google Scholar 

  18. Adhlakha N, Yadav KL (2014) Structural, dielectric, magnetic and optical properties of xNi0.75Zn0.25Fe2O4-(1-x) BiFeO3. J Mater Sci 49:4423–4438

    Article  CAS  Google Scholar 

  19. Sharma HB, Devi NK, Lee JH, Singh SB (2014) Ac electrical conductivity and magnetic properties of BiFeO3-CoFe2O4 nanocomposites. J Alloy Compd 599:32–39

    Article  CAS  Google Scholar 

  20. Maxwell JC (1933) Electricity and magnetism. Oxford Univ. Press, London

    Google Scholar 

  21. Wagner KW (1913) Ann Phys 345:817–855

    Article  Google Scholar 

  22. Shitre AR, Kewanee VB, Bichile GK, Jadhav KM (2002) X-ray diffraction and dielectric study of Co1−xCdxFe2−xCrxO4 ferrite system. Mater Lett 56:188–193

    Article  CAS  Google Scholar 

  23. Kwan CK (2004) Dielectr Phenom Solids 2:41–114

    Google Scholar 

  24. Hajara S, Sahu M, Purohit V, Choudhary RNP (2019) Dielectric, conductivity and ferroelectric properties of lead-free electronic ceramic; 0.6Bi(Fe0.98Ga0.02)O3-0.4BaTiO3. Heliyon 5:e01654

    Article  Google Scholar 

  25. Mazumder R, Ghosh S, Mondal P, Bhattacharya D, Dasgupta S (2006) Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J Appl Phys 100:033908

    Article  CAS  Google Scholar 

  26. Wang P, Zhou L, Xia M, Tan Y (2006) Analysis of electromagnetic scattering from objects coated with arbitrarily magnetized lossy ferrite materials. IEEE Trans Magn 42:791–794

    Article  Google Scholar 

  27. Li YM, Chen W, Zhou J, Xu Q, Gu XY, Lia RH (2005) Impedance spectroscopy and dielectric properties of Na 0.5Bi0.5TiO3-NaNbO3 ceramics. Physica B 365:76–81

    Article  CAS  Google Scholar 

  28. Deepti PL, Patri SK, Choudhary RNP (2017) MgBi2V2O9: preparation and electrical property evaluation. J Mater Sci Mater Electron 28:16071–16076

    Article  CAS  Google Scholar 

  29. Sinha A, Dutta A (2015) Microstructure evolution, dielectric relaxation and scaling behavior of Dy-for-Fe substituted Ni-nano ferrites. RSC Adv 5:100330–100338

    Article  CAS  Google Scholar 

  30. Costa MM, Pires GFM, Terezo AJ, Graca MPF, Sombra ASB (2011) Impedance and modulus studies of magnetic ceramic oxide Ba2Co2Fe12O22 (Co2Y) doped with Bi2O3. J Appl Phys 110:034107

    Article  CAS  Google Scholar 

  31. Narayanan S, Baral AK, Thangadurai V (2016) Dielectric characteristics of fast Li-ion conducting garnet-type Li5+2xLa3Nb2-xYxO12 (x = 0.25, 0.5 and 0.75). Phys Chem Phys 18:15418–15426

    Article  CAS  Google Scholar 

  32. Jonscher AK (1977) The universal dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  33. Srinivas K, Sarah P, Suryanarayana SV (2003) Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18. Bull Mater Sci 26:247–253

    Article  CAS  Google Scholar 

  34. Lily, Kumari K, Prasad K, Choudhary RNP (2008) Impedance spectroscopy of (Na0.5Bi0.5) (Zr0.25Ti0.75) O3 lead-free ceramic. J Alloy Compd 453:325–331

    Article  CAS  Google Scholar 

  35. Ray A, Basu T, Behra B, Gavalic DS, Thapa R, Vajandar S, Osipowicz T, Nayak P (2020) Structural, dielectric, electrical properties of Nd doped double perovskite ceramics and variation of density of state upon doping. Mater Chem Phys 239:122250

    Article  CAS  Google Scholar 

  36. Zankat A, Boricha H, Shrimali VG, Gadani K, Sagapariya K, Rajyaguru B, Gal M, Pandya DD, Solanki PS, Shah NA (2019) Electrical properties of ZnO:ZnAlO nanoparticle matrix composites. J Alloy Compd 788:623–631

    Article  CAS  Google Scholar 

  37. Elliott SR (1987) Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys 36:135–217

    Article  CAS  Google Scholar 

  38. Ben Taher Y, Oueslati A, Maaloul NK, Khirouni K, Gargouri M (2015) Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. Appl Phys A 120:1537–1543

    Article  CAS  Google Scholar 

  39. Behera C, Das PR, Choudhary RNP (2014) Structural and electrical properties of La-modified BiFeO3-BaTiO3 composites. J Mater Sci Mater Electron 25:2086–2095

    Article  CAS  Google Scholar 

  40. Choudhary RNP, Pradhan DK, Tirado CM, Bonilla GE, Katiyar RS (2007) Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 ceramics. J Mater Sci 42:7423–7432

    Article  CAS  Google Scholar 

  41. Panigrahi SC, Das PR, Parida PN, Sharma HB, Choudhary RNP (2013) Effect of Gd-substitution on dielectric and transport properties of lead zirconate titanate ceramics. J Mater Sci Mater Electron 24:3275–3283

    Article  CAS  Google Scholar 

  42. Lakshman A, Rao PSVS, Rao BP, Rao KH (2005) Electrical properties of In3+ and Cr3+ substituted magnesium-manganese ferrites. J Phys D Appl Phys 38:673–678

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the NIT, Manipur, for extending valuable support of XRD measurement and the Department of Physics, Manipur University for electrical measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hemanta Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H.H., Sharma, H.B. Study on electrical transport and relaxation process of ceramic-based nanocomposites of (1−x) BiFeO3-xCoFe2O4 (x = 0.0, 0.2, 0.5, 0.8, 1.0). J Sol-Gel Sci Technol 102, 665–678 (2022). https://doi.org/10.1007/s10971-022-05820-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05820-1

Keywords

Navigation