Skip to main content
Log in

Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The nanocrystalline fine powders (∼80 nm) of (Ba1−x La x )(Fe2/3W1/3)1−x/4O3, (BLFW) (x = 0.0, 0.05, 0.10 and 0.15) were synthesized with a combined mechanical activation and conventional high-temperature solid-state reaction methods. Preliminary X-ray structural analysis of pellet samples (prepared from fine powders) showed formation of a single-phase tetragonal system. Detailed studies of dielectric properties (εr and tan δ) exhibit that these parameters are strongly dependent on frequency, temperature and La composition. The La-substitution increases the dielectric constant and decreases the tan δ up to 10% substitutions of La at the Ba-site, and then reversed the variation, and hence this composition is considered as a critical composition. This observation was found valid for structure, microstructures, dielectric constant, electrical conductivity, JE characteristics and impedance parameters also. Like in other perovskites (PZT, BZT), La substitution plays an important role in tailoring the properties of Ba(Fe2/3W1/3)O3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wul B, Goldman LM (1945) C R Acad Sci URSS 46:139

    Google Scholar 

  2. Hill NA, Rabe KM (1999) Phy Rev B 59(13):8759

    Article  CAS  Google Scholar 

  3. Schmid H (1994) Ferroelectrics 162:317

    Article  Google Scholar 

  4. Fiebig M, Lottermoser TH, Frohlich D, Golstev AV, Pisarev RV (2002) Nature (London) 419:818

    Article  CAS  Google Scholar 

  5. Eorlnskin W, Morrison FD, Dho J, Blamire MG, Scott JF, Mathur D (2005) Science 307:1203a

    Article  Google Scholar 

  6. Ryn J, Priya S, Uchino K, Kim HE (2002) J Electroceram 8:107

    Article  Google Scholar 

  7. Zhen H, Wang J, Lofland SE, Ma Z, Mohades L et al (2004) Science 303:661

    Article  CAS  Google Scholar 

  8. Kumar MM, Srinivas A, Suryanarayana SV (2000) J Appl Phys 87:855

    Article  CAS  Google Scholar 

  9. Matusi T, Taketani E, Fujimura N, Ito T, Morii K (2003) J Appl Phys 93(10):6993

    Article  CAS  Google Scholar 

  10. “POWD” an interactive powder diffraction data interpretation and indexing programme Vs. 2.1, E. WU, School of Physical Sciences, Flinder University of South Australia, Bedford Park, Sau-5402

  11. Swartz SL, Shrout TR (1982) Mater Res Bull 17:1245

    Article  CAS  Google Scholar 

  12. Klung HP, Alexander LB (1974) In: X-ray diffraction procedures. Wiley, New York, p 687

  13. Jonscher AK (1977) Nature 267:673

    Article  CAS  Google Scholar 

  14. Jonscher AK (1983) In: Dielectric relaxation in solids. Chelsea Dielectrics Press, London

  15. Macdonald JR (1987) In: Impedance spectroscopy, emphasizing solid materials and systems. Wiley Interscience Publication, New York

  16. West AR, Sinclair DC, Hirose N (1997) J Electrocersmics 1:65

    Article  CAS  Google Scholar 

  17. Macdonald JR (1984) Solid State Ionics 13:147

    Article  CAS  Google Scholar 

  18. Raymond O, Font R, Suaerz-Almodaver N, Portelles J, Siqueiros JM (2005) J Appl Phys 97:84180

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by the grants no. NASA-NCC3-1034, NSF-0305588 and DoD-W911NF-06-0030. We are thankful to Dr. P. Bhattacharya for some help in experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Katiyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, R.N.P., Pradhan, D.K., Tirado, C.M. et al. Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics. J Mater Sci 42, 7423–7432 (2007). https://doi.org/10.1007/s10853-007-1835-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1835-z

Keywords

Navigation