Skip to main content
Log in

Impedance behaviors of Nd-doped BiFeO3 ceramics with 0.10 ≤ x ≤ 0.30

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Bi1-xNdxFeO3 (BNFO) ceramics with 0.10 ≤ x ≤ 0.30 were fabricated by the solid-state reaction method. As Nd concentration x increases, the samples experience a structural phase transition from R3c phase to Pnma phase with the intermediate phase Pna21. The systematical study on the impedance spectra that are plotted with various formalisms reveals that the grain effect dominates the single non-Debye thermally activated relaxation process, and an equivalent parallel circuit with RC element and constant phase element can interpret the impedance Nyquist plots for all the samples with a good fitting result. The frequency-dependent normalized impedance and modulus spectra and the ac conductivity analysis suggest the primary role of the localized conductivity in the BNFO system, which may be possibly assisted by small polarons and affected by the structural phase transition in the sample. According to the estimated values of activation energy \(E_{a}\) derived from temperature-dependent dc conductivity data, it is speculated that the doubly ionized oxygen vacancies combined with ferroelectric interactions may be responsible for the short-range movements in the conductivity and relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. N.A. Spaldin, M. Fiebig, Science 309, 391–392 (2005)

    Article  CAS  Google Scholar 

  2. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)

    Article  CAS  Google Scholar 

  3. B. Manuel, B. Agnès, Nat. Mater. 7, 425–426 (2008)

    Article  Google Scholar 

  4. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719–1722 (2003). https://doi.org/10.1126/science.1080615

    Article  CAS  Google Scholar 

  5. Y.H. Lee, J.M. Wu, C.H. Lai, Appl. Phys. Lett. 88, 6694 (2006). https://doi.org/10.1063/1.2167793

    Article  CAS  Google Scholar 

  6. D.O. Alikin, A.P. Turygin, J. Walker, A. Bencan, B. Malic, T. Rojac, V.Y. Shur, A.L. Kholkin, Acta Mater. 125, 265–273 (2016)

    Article  Google Scholar 

  7. M.S. Bozgeyik, N. Kirkgecit, R.K. Katiyar, R.S. Katiyar, J. Alloys Compd. 819, 153050 (2019)

    Article  Google Scholar 

  8. Y. Tian, F. Xue, Q. Fu, D. Zhou, Y. Hu, L. Zhou, Z. Zheng, Z. Xin, J. Magn. Magn. Mater. 435, 154–161 (2017). https://doi.org/10.1016/j.jmmm.2017.03.024

    Article  CAS  Google Scholar 

  9. T. Wang, X.L. Wang, S.H. Song, Q. Ma, Ceram. Int. 46, 15228–15235 (2020). https://doi.org/10.1016/j.ceramint.2020.03.061

    Article  CAS  Google Scholar 

  10. X.X. Shi, X.Q. Liu, X.M. Chen, J. Appl. Phys. 119, 064104 (2016). https://doi.org/10.1063/1.4941820

    Article  CAS  Google Scholar 

  11. H. Tao, J. Lv, R. Zhang, R. Xiang, J. Wu, Mater. Des. 120, 83–89 (2017). https://doi.org/10.1016/j.matdes.2017.01.083

    Article  CAS  Google Scholar 

  12. S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Appl. Phys. Lett. 94, 112903 (2009). https://doi.org/10.1063/1.3097222

    Article  CAS  Google Scholar 

  13. Y.-J. Wu, X.-K. Chen, J. Zhang, X.-J. Chen, J. Appl. Phys. 111 (2012).

  14. P.Z. Chen, Y.Q. Li, X. Li, S.H. Zheng, M.F. Liu, L. Lin, Z.B. Yan, X.P. Jiang, J.M. Liu, AIP Adv. (2020). https://doi.org/10.1063/5.0010568

    Article  Google Scholar 

  15. J. Chen, B. Xu, X.Q. Liu, T.T. Gao, L. Bellaiche, X.M. Chen, Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201806399

    Article  Google Scholar 

  16. F. Mumtaz, S. Nasir, G.H. Jaffari, S.I. Shah, J. Alloys Compd. 876, 160178 (2021)

    Article  CAS  Google Scholar 

  17. K. Abdouli, F. Hassini, W. Cherif, P.R. Prezas, M.P.F. Graca, M.A. Valent, O. Messaoudi, S. Elgharbi, A. Dhahri, L. Manai, RSC Adv. 12, 16805–16822 (2022). https://doi.org/10.1039/d2ra01006b

    Article  CAS  Google Scholar 

  18. J. Wu, J. Wang, J. Am. Ceram. Soc. 93, 2795–2803 (2010). https://doi.org/10.1111/j.1551-2916.2010.03816.x

    Article  CAS  Google Scholar 

  19. X. Vendrell, J. Ramírez-González, Z.-G. Ye, A.R. West, Commun. Phys. (2022). https://doi.org/10.1038/s42005-021-00775-1

    Article  Google Scholar 

  20. N. Kumar, A. Shukla, N. Kumar, S. Hajra, S. Sahoo, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 30, 1919–1926 (2018)

    Article  Google Scholar 

  21. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 31, 10006–10017 (2020)

    CAS  Google Scholar 

  22. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Appl. Phys. A: Mater. Sci. Process. (2020). https://doi.org/10.1007/s00339-020-3365-3

    Article  Google Scholar 

  23. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 32, 5870–5885 (2021)

    CAS  Google Scholar 

  24. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, Mater. Chem. Phys. 263, 124359 (2021)

    Article  CAS  Google Scholar 

  25. F. Xue, Q. Fu, D. Zhou, Y. Tian, Y. Hu, Z. Zheng, L. Zhou, Ceram. Int. 41, 14718–14726 (2015)

    Article  CAS  Google Scholar 

  26. P.C. Sati, M. Kumar, S. Chhoker, M. Jewariya, Ceram. Int. 41, 2389–2398 (2015). https://doi.org/10.1016/j.ceramint.2014.10.053

    Article  CAS  Google Scholar 

  27. J. Dzik, H. Bernard, K. Osińska, A. Lisińska-Czekaj, D. Czekaj, Synthesis. Arch. Metall. Mater. (2011). https://doi.org/10.2478/v10172-011-0125-6

    Article  Google Scholar 

  28. Y.-J. Zhang, H.-G. Zhang, J.-H. Yin, H.-W. Zhang, J.-L. Chen, W.-Q. Wang, G.-H. Wu, J. Magn. Magn. Mater. 322, 2251–2255 (2010)

    Article  CAS  Google Scholar 

  29. T. Pikula, J. Dzik, A. Lisinska-Czekaj, D. Czekaj, E. Jartych, J. Alloys Compd. 606, 1–6 (2014)

    Article  CAS  Google Scholar 

  30. S. Madolappa, H.K. Choudhary, N. Punia, A.V. Anupama, B. Sahoo, Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124849

    Article  Google Scholar 

  31. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A. 112, 387–395 (2012). https://doi.org/10.1007/s00339-012-7412-6

    Article  CAS  Google Scholar 

  32. F. Mizouri, N. Abdelmoula, D. Mezzane, H. Khemakhem, J. Alloys Compd. 763, 570–580 (2018). https://doi.org/10.1016/j.jallcom.2018.05.353

    Article  CAS  Google Scholar 

  33. I. Coondoo, N. Panwar, M.A. Rafiq, V.S. Puli, M.N. Rafiq, R.S. Katiyar, Ceram. Int. 40, 9895–9902 (2014). https://doi.org/10.1016/j.ceramint.2014.02.084

    Article  CAS  Google Scholar 

  34. C. Liu, S. Wu, L. Liu, X. Lei, J. Xu, J. Khaliq, C. Li, Ceram. Int. 48, 6899–6904 (2022). https://doi.org/10.1016/j.ceramint.2021.11.244

    Article  CAS  Google Scholar 

  35. A.R. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504–3508 (2001). https://doi.org/10.1063/1.1401802

    Article  CAS  Google Scholar 

  36. B.C. Sutar, R.N.P. Choudhary, P.R. Das, Ceram. Int. 40, 7791–7798 (2014). https://doi.org/10.1016/j.ceramint.2013.12.122

    Article  CAS  Google Scholar 

  37. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423–7432 (2007). https://doi.org/10.1007/s10853-007-1835-z

    Article  CAS  Google Scholar 

  38. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, J. Appl. Phys. (2010). https://doi.org/10.1063/1.3457217

    Article  Google Scholar 

  39. S.K. Rout, S. Parida, E. Sinha, P.K. Barhai, I.W. Kim, Curr. Appl. Phys. 10, 917–922 (2010). https://doi.org/10.1016/j.cap.2009.11.001

    Article  Google Scholar 

  40. R. Muduli, R. Pattanayak, S. Kumar, S.K. Kar, P. Kumar, S. Panigrahi, R.K. Panda, J. Alloys Compd. 656, 33–44 (2016). https://doi.org/10.1016/j.jallcom.2015.09.184

    Article  CAS  Google Scholar 

  41. R. Ranjan, R. Kumar, N. Kumar, B. Behera, R.N.P. Choudhary, J. Alloys Compd. 509, 6388–6394 (2011). https://doi.org/10.1016/j.jallcom.2011.03.003

    Article  CAS  Google Scholar 

  42. N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Phys. Rev. B. (2008). https://doi.org/10.1103/PhysRevB.77.014111

    Article  Google Scholar 

  43. B.K. Barick, R. Choudhary, D.K. Pradhan, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2012.12.087

    Article  Google Scholar 

  44. A. Ray, T. Basu, B. Behera, D.S. Gavali, R. Thapa, S. Vajandar, T. Osipowicz, P. Nayak, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122250

    Article  Google Scholar 

  45. J. Irvine, D.C. Sinclair, A.R. West, Adv. Mater. 2, 132–138 (1990)

    Article  CAS  Google Scholar 

  46. E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram. 10, 165–177 (2003)

    Article  CAS  Google Scholar 

  47. P. Pandit, S. Satapathy, P.K. Gupta, Phys. B 406, 2669–2677 (2011)

    Article  CAS  Google Scholar 

  48. W.S. Chang, C.-S. Tu, P.-Y. Chen, C.-S. Chen, C.-Y. Lin, K.-C. Feng, Y.L. Hsieh, Y.H. Huang, J. Alloys Compd. 710, 670–679 (2017)

    Article  CAS  Google Scholar 

  49. A.K. Jonscher, J. Mater. Sci. 16, 2037–2060 (1981)

    Article  CAS  Google Scholar 

  50. A. Benali, B.M.G. Melo, P.R. Prezas, M. Bejar, E. Dhahri, M.A. Valente, M.P.F. Graça, B.A. Nogueira, B.F.O. Costa, J. Alloys Compd. 775, 304–315 (2019). https://doi.org/10.1016/j.jallcom.2018.10.142

    Article  CAS  Google Scholar 

  51. A. Ghosh, Phys. Rev. B 41, 1479–1488 (1990)

    Article  CAS  Google Scholar 

  52. S. Mollah, K.K. Som, K. Bose, B.K. Chaudhuri, J. Appl. Phys. 74, 931–937 (1993)

    Article  CAS  Google Scholar 

  53. M. Megdiche, C. Perrin-pellegrino, M. Gargouri, J. Alloys Compd. 584, 209–215 (2014). https://doi.org/10.1016/j.jallcom.2013.09.021

    Article  CAS  Google Scholar 

  54. B. Deka, S. Ravi, J. Alloys Compd. 720, 589–598 (2017). https://doi.org/10.1016/j.jallcom.2017.05.295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant numbers 11904304 and 91963116], Natural Science Foundation of Fujian Province [Grant numbers 2021J011218, 2021J011217, 2021J011215 and 2021I0025].

Funding

This work was supported by the National Natural Science Foundation of China [Grant numbers 11904304 and 91963116], Natural Science Foundation of Fujian Province [grant numbers 2021J011218, 2021J011217, 2021J011215 and 2021I0025].

Author information

Authors and Affiliations

Authors

Contributions

Material preparation and data collection were performed by Yi Zhou and Lei Jiang. Data analysis was performed by Yi Zhou and Xiaohua Huang. The first draft of the manuscript was written by Yi Zhou. Xiaohua Huang revised the manuscript and approved the final version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaohua Huang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 954 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Huang, X., Jiang, L. et al. Impedance behaviors of Nd-doped BiFeO3 ceramics with 0.10 ≤ x ≤ 0.30. J Mater Sci: Mater Electron 33, 25475–25487 (2022). https://doi.org/10.1007/s10854-022-09251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09251-0

Navigation