Skip to main content
Log in

Synthesis of high temperature resistant ZrO2-SiO2 composite aerogels via “thiol-ene” click reaction

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We reported the preparation of a series of ZrO2-SiO2 composite aerogels via the sol-gel reaction between the zirconium source (ZrOCl2·8H2O) and the gel initiator (mercaptosuccinic acid-triethoxyvinylsilane). Such novel gel gelator was prepared by the thiol-ene click reaction using triethoxyvinylsilane (VTES) and mercaptosuccinic acid (MSA). The unique molecule structure of the gel initiator allows the in-situ modification of ZrO2 with SiO2 in the sol-gel reaction, which was achieved by the hydrolysis and polycondensation of siloxane with the change of the pH spontaneously. SiO2 with the controllable content can be in-situ introduced into ZrO2 backbone. As a result, the composite aerogel showed better thermal stability compared with pristine ZrO2 aerogel, proved by the following facts: (i) the aerogels remained amorphous after calcination in air at 600 °C; (ii) the specific surface area maintained at 53.4 m2/g when the temperature rising to 1000 °C.

ZrO2-SiO2 composite aerogels with improved thermal stability have been prepared via the “thiol-ene” click section

Highlights

  • ZrO2-SiO2 composite aerogels have been prepared via the “thiol-ene” click reaction from the zirconium source (ZrOCl2·8H2O) and the gel initiator (mercaptosuccinic acid-triethoxyvinylsilane).

  • The introduction of SiO2 into ZrO2 aerogel with the controllable content can be achieved by the in-situ hydrolysis of the gel initiator.

  • The ZrO2-SiO2 composite aerogel showed better thermal stability compared with pristine ZrO2 aerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stöcker C, Schneider M, Baiker A (1995) Zirconia aerogels and xerogels: influence of solvent and acid on structural properties. J Porous Mater 2(2):171–183

    Article  Google Scholar 

  2. Wang ML, Liu BL, Ren CC, Shih ZW (1997) Preparation of the precursor of the zirconium oxide in EDTA-ammonia solution by the sol-gel method. Ind Eng Chem Res 36(6):2149–2155

    Article  Google Scholar 

  3. Bangi UKH, Jung HNR, Park CS, Mahadik DB, Park HH (2016) Effect of thermal treatment on the textural properties and thermal stability of surface modified zirconia aerogel powders. Int J Nanotechnol 13:452–462

    Article  Google Scholar 

  4. Shi Z, Gao H, Wang X, Li C, Wang W, Hong Z, Zhi M (2018) One-step synthesis of monolithic micro-nano yttria stabilized ZrO2-Al2O3 composite aerogel. Micro Meso Mater 259:26–32

    Article  Google Scholar 

  5. Wu ZG, Zhao YX, Liu DS (2004) The synthesis and characterization of mesoporous silica-zirconia aerogels. Micro Meso Mater 68(1):127–132

    Article  Google Scholar 

  6. Wang Q, Li X, Fen W, Ji H, Sun X, Xiong R (2014) Synthesis of crack-free monolithic ZrO2 aerogel modified by SiO2. J Porous Mater 21(2):127–130

    Article  Google Scholar 

  7. Ren J, Cai X, Yang H, Guo X (2015) Preparation and characterization of high surface area ZrO2 aerogel modified by SiO2. J Porous Mater 22(4):973–978

    Article  Google Scholar 

  8. Zu G, Shen J, Zou L, Wang W, Lian Y, Zhang Z, Du A (2013) Nanoengineering super heat-resistant, strong alumina aerogels. Chem Mater 25(23):4757–4764

    Article  Google Scholar 

  9. Zu G, Shen J, Zou L, Zou W, Guan D, Wu Y, Zhang Y (2017) Highly thermally stable zirconia/silica composite aerogels prepared by supercritical deposition. Micro Meso Mater 238:90–96

    Article  Google Scholar 

  10. Gao H, Zhang Z, Shi Z, Zhang J, Zhi M, Hong Z (2018) Synthesis of high-temperature resistant monolithic zirconia-based aerogel via facile water glass assisted sol-gel method. J Sol-Gel Sci Techn 85(3):567–573

    Article  Google Scholar 

  11. Zhang Z, Gao Q, Liu Y, Zhou C, Zhi M, Hong Z, Zhang F, Liu B (2015) A facile citric acid assisted sol-gel method for preparing monolithic yttria-stabilized zirconia aerogel. RSC Adv 5(102):84280–84283

    Article  Google Scholar 

  12. Wang X, Li C, Shi Z, Zhi M, Hong Z (2018) The investigation of an organic acid assisted sol-gel method for preparing monolithic zirconia aerogels. RSC Adv 8(15):8011–8020

    Article  Google Scholar 

  13. Zhang Z, Gao Q, Gao H, Shi Z, Wu J, Zhi M, Hong Z (2016) Nickel oxide aerogel for high performance supercapacitor electrodes. RSC Adv 6(113):112620–112624

    Article  Google Scholar 

  14. Gao Q, Wang X, Shi Z, Ye Z, Wang W, Zhang N, Hong Z, Zhi M (2018) Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem Eng J 331:185–193

    Article  Google Scholar 

  15. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49(9):1540–1573

    Article  Google Scholar 

  16. Hoyle CE, Lee TY, Roper T (2004) Thiol-enes: chemistry of the past with promise for the future. J Polym Sci Part A: Polym Chem 42(21):5301–5338

    Article  Google Scholar 

  17. Yun S, Luo HJ, Gao YF (2015) Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. J Mater Chem A 3(7):3390–3398

    Article  Google Scholar 

  18. Xue L, Wang D, Yang Z, Liang Y, Zhang J, Feng S (2013) Facile, versatile and efficient synthesis of functional polysiloxanes via thiol-ene chemistry. Eur Polym J 49(5):1050–1056

    Article  Google Scholar 

  19. Guo X, Song J, Ren J, Yang F, Kanamori K, Nakanishi K (2016) Facile preparation of well-defined macroporous yttria-stabilized zirconia monoliths via sol-gel process accompanied by phase separation. J Porous Mater 23(4):867–875

    Article  Google Scholar 

  20. Akhtar MN, Chen YC, AlDamen MA, Tong ML (2017) 3D oxalato-bridged lanthanide (III) MOFs with magnetocaloric, magnetic and photoluminescence properties. Dalton Trans 46(1):116–124

    Article  Google Scholar 

  21. Shi RH, Zhang ZR, Fan HL, Zhen T, Ju S, Mi J (2017) Cu-based metal-organic framework/activated carbon composites for sulfur compounds removal. Appl Surf Sci 394:394–402

    Article  Google Scholar 

  22. Sahiner N, Demirci S, Yildiz M (2017) Preparation and characterization of bi-etallic and tri-metallic metal organic frameworks based on trimesic acid and Co (II), Ni (II), and Cu (II) ions. J Electron Mater 46(2):790–801

    Article  Google Scholar 

  23. Lavoine N, Bras J, Saito T, Isogai A (2017) Optimization of preparation of thermally stable cellulose nanofibrils via heat-induced conversion of ionic bonds to amide bonds. J Polym Sci Part A: Polym Chem 55(10):1750–1756

    Article  Google Scholar 

  24. Xiong R, Li X, Ji H, Sun X, He J (2014) Thermal stability of ZrO2-SiO2 aerogel modified by Fe (III) ion. J Sol-Gel Sci Technol 72(3):496–501

    Article  Google Scholar 

  25. Chakhari S, Younes MK, Rives A, Ghorbel A (2015) Effect of the doping agent nature on the characteristic and catalytic properties of aerogel zirconia catalysts doped with sulfate groups or heteropolytungstic acid. Mater Res Bull 72:35–42

    Article  Google Scholar 

  26. Li X, Jiao Y, Ji H, Sun X (2013) The effect of propylene oxide on microstructure of zirconia monolithic aerogel. Integr Ferroelectr 146(1):122–126

    Article  Google Scholar 

  27. He J, Li X, Su D, Ji H, Zhang X, Zhang W (2016) Super-hydrophobic hexamethyl-disilazane modified ZrO2-SiO2 aerogels with excellent thermal stability. J Mater Chem A 4(15):5632–5638

    Article  Google Scholar 

  28. Pyen S, Hong E, Shin M, Suh YW, Shin CH (2018) Acidity of co-precipitated SiO2-ZrO2 mixed oxides in the acid-catalyzed dehydrations of iso-propanol and formic acid. Mol Catalysis 448:71–77

    Article  Google Scholar 

  29. Chao X, Yuan W, Shi Q, Zhu Z (2016) Improvement of thermal stability of zirconia aerogel by addition of yttrium. J Sol-Gel Sci Technol 80(3):667–674

    Article  Google Scholar 

  30. Zhong L, Chen X, Song H, Guo K, Hu Z (2014) Synthesis of monolithic zirconia aerogel via a nitric acid assisted epoxide addition method. RSC Adv 4(60):31666–31671

    Article  Google Scholar 

  31. Zhao Z, Chen D, Jiao X (2007) Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: comparison of aerogels prepared by freeze-drying and supercritical CO2 (l) extraction. J Phys Chem C 111(50):18738–18743

    Article  Google Scholar 

  32. Mejri I, Younes MK, Ghorbel A (2006) Comparative study of the textural and structural properties of the aerogel and xerogel sulphated zirconia. J Sol-Gel Sci Technol 40(1):3–8

    Article  Google Scholar 

  33. Fenech J, Viazzi C, Bonino JP, Ansart F, Barnabé A (2009) Morphology and structure of YSZ powders: comparison between xerogel and aerogel. Ceram Int 35(8):3427–3433

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National key research and development program (grant no. 2016YFB0901600) and NSCF (grant no. 21303162 and grant no. 11604295).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingjia Zhi or Zhanglian Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, Z., Zhi, M. et al. Synthesis of high temperature resistant ZrO2-SiO2 composite aerogels via “thiol-ene” click reaction. J Sol-Gel Sci Technol 87, 734–742 (2018). https://doi.org/10.1007/s10971-018-4766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4766-z

Keywords

Navigation