Skip to main content
Log in

Preparation and Characterization of Bi-metallic and Tri-metallic Metal Organic Frameworks Based on Trimesic Acid and Co(II), Ni(II), and Cu(II) Ions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Trimesic acid-M1(II):M2(II) (M1,2(II)=M(II)=Co(II), Ni(II) and Cu(II)) bi-metallic or tri-metallic organic frameworks (MOFs) were synthesized by the reaction of trimesic acid (H3BTC) ligand with the corresponding MCl2nH2O aqueous solutions. Here, bi- and tri-metallic MOF preparations were demonstrated by using H3BTC as an organic linker, with dual metal ion mixtures at different mole ratios such as Co(II):Ni(II), Ni(II):Cu(II), and Cu(II):Co(II) as metal ion sources in the synthesis of bi-metallic MOFs, and the triple metal ion mixture of Co(II):Ni(II):Cu(II) as the metal ion source in the synthesis of tri-metallic MOFs. The bi- or tri-metallic MOFs were characterized via the Brunauer–Emmett–Teller method, thermogravimetric analyzer (TGA), and magnetic susceptibility measurements with the Gouy method, FT-IR spectroscopy, and electronic spectral studies. The results revealed that the H3BTC MOFs have octahedral and distorted octahedral arrangement around the metal ions, and the d–d transition was not observed in the complex. It was further found that all the prepared MOFs contain water molecules confirmed by Fourier transform infrared (FT-IR) and TGA analyses. The FT-IR spectra of the MOF complexes were characterized by the appearance of a broad band in the region of 3454–3300 cm−1 due to the ν(-OH) of the coordinated water; therefore, the location of the two water molecules was assumed to be inside the complex structure. Remarkably, the synthesized bi-metallic MOFs had unique and distinct colors depending on the amounts of metal ions used in the feed, implying that these bi-metallic MOFs with tunable M1(II) and M2(II) ratios offer great potential in the design of color-coded materials for use as sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Wang and S.M. Cohen, Chem. Soc. Rev. 38, 1315 (2009).

    Article  Google Scholar 

  2. C.T. Chen and K.S. Suslick, Coord. Chem. Rev. 128, 293 (1993).

    Article  Google Scholar 

  3. G. Ferey, Chem. Soc. Rev. 37, 191 (2008).

    Article  Google Scholar 

  4. I. Godberg, Cem. Eur. J. 6, 3863 (2000).

    Google Scholar 

  5. M. Munataka, L.P. Wu, and T. Kuroda-Sowa, Adv. Inorg. Chem. 46, 173 (1998).

    Article  Google Scholar 

  6. O.M. Yaghi, M. O’keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, and J. Kim, Nature 423, 705 (2003).

    Article  Google Scholar 

  7. M. Calik, F. Auras, L.M. Salonen, K. Bader, I. Grill, M. Handloser, D.D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, and T. Bein, J. Am. Chem. Soc. 136, 17802 (2014).

    Article  Google Scholar 

  8. A.P. Côte, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, and O.M. Yaghi, Science 310, 1166 (2005).

    Article  Google Scholar 

  9. J.W. Colson and W.R. Dichtel, Nat. Chem. 5, 453 (2013).

    Article  Google Scholar 

  10. A.M. Spokoyny, D. Kim, A. Sumrein, and C.A. Mirkin, Chem. Soc. Rev. 38, 1218 (2009).

    Article  Google Scholar 

  11. H.L. Jiang and Q. Hu, Chem. Commun. 47, 3351 (2011).

    Article  Google Scholar 

  12. H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, and O.M. Yaghi, Science 329, 424 (2010).

    Article  Google Scholar 

  13. D.J. Tranchemontagne, J.L. Mendoza-Cortes, M. O’Keeffe, and O.M. Yaghi, Chem. Soc. Rev. 38, 1257 (2009).

    Article  Google Scholar 

  14. C. Valente, E. Choi, M.E. Belowich, C.J. Doonan, Q.W. Li, T.B. Gasa, Y.Y. Botros, O.M. Yaghi, and J.F. Stoddart, Chem. Commun. 46, 4911 (2010).

    Article  Google Scholar 

  15. J.R. Long and O.M. Yaghi, Chem. Soc. Rev. 38, 1213 (2009).

    Article  Google Scholar 

  16. H.C. Zhou, J.R. Long, and O.M. Yaghi, Chem. Rev. 112, 673 (2012).

    Article  Google Scholar 

  17. K. Sel, S. Demirci, O.F. Ozturk, N. Aktas, and N. Sahiner, Microelectron. Eng. 136, 71 (2015).

    Article  Google Scholar 

  18. N. Sahiner, K. Sel, O.F. Ozturk, S. Demirci, and G. Terzi, Appl. Surf. Sci. 314, 663 (2014).

    Article  Google Scholar 

  19. K. Sel, S. Demirci, E. Meydan, S. Yildiz, O.F. Ozturk, H. Al-Lohedan, and N. Sahiner, J. Electron. Mater. 44, 136 (2015).

    Article  Google Scholar 

  20. M.M. Peng, M. Ganesh, R. Vinodh, M. Palanichamy, and H.T. Jang, Arab. J. Chem. doi:10.1016/j.arabjc.2014.11. 024.

  21. Y. An, H. Li, Y. Liu, B. Huang, Q. Sun, Y. Dai, X. Qin, and X. Zhang, J. Solid State Chem. 233, 194 (2016).

    Article  Google Scholar 

  22. Q. Yuan, D. Zhang, L. van Haandel, F. Ye, T. Xue, E.J.M. Hensen, and Y. Guan, J. Mol. Catal. A: Chem. 406, 58 (2015).

    Article  Google Scholar 

  23. Q.Q. Xu, H.J. Fan, Y.T. Li, K.E. Christensen, and T. Ren, Polyhedron 92, 60 (2015).

    Article  Google Scholar 

  24. M.A. Gotthardt, R. Schoch, S. Wolf, and M. Bauer, Dalton Trans. 44, 2052 (2015).

    Article  Google Scholar 

  25. O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O. Yazaydın, and J.T. Hupp, J. Am. Chem. Soc. 134, 15016 (2012).

    Article  Google Scholar 

  26. S. Kayal, B. Sun, and A. Chakraborty, Energy 91, 772 (2015).

    Article  Google Scholar 

  27. E. Adatoz, A.K. Avci, and S. Keskin, Sep. Pur. Technol. 152, 207 (2015).

    Article  Google Scholar 

  28. J.M. Taylor, R.K. Mah, I.L. Moudrakovski, C.I. Ratcliffe, R. Vaidhyanathan, and G.K. Shimizu, J. Am. Chem. Soc. 132, 14055 (2010).

    Article  Google Scholar 

  29. Q.L. Li, J.P. Wang, W.C. Liu, X.Y. Zhuang, J.Q. Liu, G.L. Fan, B.H. Li, W.N. Lin, and J.H. Man, Inorg. Chem. Commun. 55, 8 (2015).

    Article  Google Scholar 

  30. M. Fujita, Y.J. Kwon, S. Washizu, and K. Ogura, J. Am. Chem. Soc. 116, 1151 (1994).

    Article  Google Scholar 

  31. T.H. Al-Noor and L.K. Abdul, Karim. Chem. Mater. Res. 7, 32 (2015).

    Google Scholar 

  32. PANalytical HighScore Plus, Version 3.0.4; (PANaltyical BV, Amelo, 2011).

  33. A.K. Singh, S.R. Deo, G.S. Thool, R.S. Singh, Y.R. Katre, and A. Gupta, J. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 41, 1346 (2011).

    Article  Google Scholar 

  34. G.I. Devi, P.G. Sabu, and P. Geetha, Res. J. Chem. Sci. 3, 58 (2013).

    Google Scholar 

  35. S.A.H. Elbohy, Int. J. Electrochem. Sci. 8, 12387 (2013).

    Google Scholar 

  36. D. Koushik, R. Jagnyeswar, M. Mario, W. Xin-Yi, G. Song, and B. Pradyot, J. Inorg. Biochem. 101, 95 (2007).

    Article  Google Scholar 

  37. K. Bertoncello, G.D. Fallon, K.S. Murray, and E.R.T. Tiekink, Inorg. Chem. 30, 3562 (1991).

    Article  Google Scholar 

Download references

Acknowledgement

Support from the Turkish Academy of Science (TUBA) is greatly appreciated under the 2008 TUBA-GEBIP (TUBA-Young incentive award) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supp. Figure 1

The FT-IR spectra of H3BTC-based (a) Ni(II):Cu(II), and (b) Cu(II):Co(II) bi-metallic MOFs with different mole ratios of metal ions. (JPEG 98 kb)

Supp. Figure 2

The FT-IR spectra of H3BTC-based (a) Co(II):Ni(II):Cu(II) tri-metallic, and (b) Cu(II):Co(II) bi-metallic MOFs prepared with different mole ratios of metal ions. (JPEG 99 kb)

Supp. Figure 3

The PXRD spectra of H3BTC-based (a) Co(II) (b) Ni(II), (c) Cu(II), (d) Co(II):Ni(II) (50:50), (e) Ni(II):Cu(II) (50:50), (f) Co(II):Cu(II) (50:50) bi-metallic, and (g) Co(II):Ni(II):Cu(II) tri-metallic MOFs. (JPEG 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahiner, N., Demirci, S. & Yildiz, M. Preparation and Characterization of Bi-metallic and Tri-metallic Metal Organic Frameworks Based on Trimesic Acid and Co(II), Ni(II), and Cu(II) Ions. J. Electron. Mater. 46, 790–801 (2017). https://doi.org/10.1007/s11664-016-4969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4969-4

Keywords

Navigation