Skip to main content
Log in

Propylene oxide as a new reagent for mixed SiO 2 -based aerogels preparation

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A two-stage technique is developed to synthesize SiO2-based aerogels using propylene oxide as a reagent. By this technique, we were able to synthesize mixed SiO2–Cr2O3 and SiO2–Yb2O3 aerogels containing 0.4–1.3% at. of the dopant.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1

Similar content being viewed by others

References

  1. Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer, Dordrecht, Heidelberg, London

    Book  Google Scholar 

  2. Yoldas BE, Annen MJ, Bostaph J (2000) Chem Mater 12:2475–2484

    Article  Google Scholar 

  3. Husing N, Schubert U (1998) Angew Chem Int Edit 37:23–45

    Article  Google Scholar 

  4. Fricke J, Lu X, Wang P, Buttner D, Heinemann U (1992) Int J Heat Mass Transf 35:2305–2309

    Article  Google Scholar 

  5. Conroy JFT, Hosticka B, Davis SC, Smith AN, Norris PM (1999) Microscale Thermophys Eng 3:199–215

    Article  Google Scholar 

  6. Hrubesh LW (1998) J Non-Cryst Solids 225:335–342

    Article  Google Scholar 

  7. Aristov YI, Restuccia G, Tokarev MM, Cacciola G (2000) React Kinet Catal Lett 69:345–353

    Article  Google Scholar 

  8. Antczak T, Mrowiec-Bialon J, Bielecki S, Jarzebski AB, Malinowski JJ, Lachowski AI, Galas E (1997) Biotechnol Tech 11:9–11

    Article  Google Scholar 

  9. Pierre M, Buisson P, Fache F, Pierre A (2000) Biocatal Biotransform 18:237–251

    Article  Google Scholar 

  10. Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Technol 199:10–26

    Article  Google Scholar 

  11. Baetens R, Jelle BP, Gustavsen A (2001) Energ Build 43:761–769

    Article  Google Scholar 

  12. Chung MK, Schlaf M (2004) J Am Chem Soc 126:7386–7392

    Article  Google Scholar 

  13. Feinle A, Flaig S, Puchberger M, Schubert U, Hüsing N (2015) Chem Commun 51:2339–2341

    Article  Google Scholar 

  14. Jenningsa AR, McColluma J, Wilkinsa AJ, Mannib SM, Iacono ST (2017) RSC Adv 7:21962–21968

    Article  Google Scholar 

  15. Lermontov SA, Sipyagina NA, Malkova AN, Yarkov AV, Vasil’ev SG, Simonenko NP, Baranchikov AE, Ivanov VK (2016) RSC Adv 6:80766–80772

    Article  Google Scholar 

  16. Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) J Colloid Interface Sci 300:279–285

    Article  Google Scholar 

  17. Kavale MS, Mahadik DB, Parale VG, Wagh PB, Gupta SC, Rao AV, Barshilia HC (2011) Appl Surf Sci 258:158–162

    Article  Google Scholar 

  18. Chao X, Jun S, Bin Z (2009) J Non-Cryst Solids 355:492–495

    Article  Google Scholar 

  19. Tamon H, Sone T, Okazaki M (1997) J Colloid Interface Sci 188:162–167

    Article  Google Scholar 

  20. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Chem Mater 17:395–401

    Article  Google Scholar 

  21. Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Chem Mater 13:999–1007

    Article  Google Scholar 

  22. Gash AE, Tillotson TM, Satcher Jr JH, Hrubesh LW, Simpson RL (2001) J Non-Cryst Solids 285:22–28

    Article  Google Scholar 

  23. Clapsaddle BJ, Sprehn DW, Gash AE, Satcher JH, Simpson RL (2004) J Non-Cryst Solids 350:173–181

    Article  Google Scholar 

  24. He J, Li X, Su D, Ji H, Zhang X (2016) J Mater Chem A 4:5632–5638

    Article  Google Scholar 

  25. Schubert U (2016) J Sol–Gel Sci Technol 79:249–261

    Article  Google Scholar 

  26. Vioux A (1997) Chem Mater 9:2292–2299

    Article  Google Scholar 

  27. Veith M (2002) Dalton Trans 12:2405–2412

    Article  Google Scholar 

  28. Singh A, Mehrotra RC (2004) Coord Chem Rev 248:101–118

    Article  Google Scholar 

  29. Rupp W, Husing N, Shubert U (2002) J Mater Chem 12:2594–2596

    Article  Google Scholar 

  30. Lermontov S, Malkova A, Yurkova L, Straumal E, Gubanova N, Baranchikov A, Smirnov M, Tarasov V, Buznik V, Ivanov V (2014) J Supercrit Fluid 89:28–32

    Article  Google Scholar 

  31. Lermontov SA, Malkova AN, Yurkova LL, Straumal EA, Gubanova NN, Baranchikov AYe, Ivanov VK (2014) Mater Lett 116:116–119

    Article  Google Scholar 

  32. Lermontov SA, Sipyagina NA, Malkova AN, Yarkov AV, Baranchikov AE, Kozik VV, Ivanov VK (2014) RSC Adv 4:52423–52429

    Article  Google Scholar 

  33. Wang S, Raychaudhuri S, Sarkar (1993) US Pat 5,264,197, 23 Nov 1993

Download references

Acknowledgements

Financial support from the Russian Science Foundation (Grant 14–13-01150, aerogels synthesis, texture properties) is greatly appreciated and Russian Foundation for Basic Research (Grant 16-29-10736, XRD and EDX experiments) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lermontov.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lermontov, S.A., Malkova, A.N., Sipyagina, N.A. et al. Propylene oxide as a new reagent for mixed SiO 2 -based aerogels preparation. J Sol-Gel Sci Technol 84, 377–381 (2017). https://doi.org/10.1007/s10971-017-4429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4429-5

Keywords

Navigation