Skip to main content
Log in

Superparamagnetic nanosized perovskite oxide La0.5Sr0.5Ti0.5Fe0.5O3 synthesized by modified polymeric precursor method: effect of calcination temperature on structural and magnetic properties

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present investigation reports the synthesis of superparamagnetic La0.5Sr0.5Ti0.5Fe0.5O3 by modified polymeric precursor method and the effect of temperature on its structural and magnetic properties. The structures of the phases, calcined at different temperatures, were refined in the space group Pbnm with orthorhombic setting. The crystallite size and specific surface area during the decomposition process were monitored up to 1100 °C. A pure nanosized La0.5Sr0.5Ti0.5Fe0.5O3 powder with high-specific surface area of 49 m2 g-1 was obtained after calcination at 500 °C, while the crystallite size was found to be 18 nm, which was in good agreement with the grain size (19 nm) obtained from TEM investigations. The field dependence of magnetization (M–H) measurements indicate that all the samples exhibit weak ferromagnetic behavior due to slight canting of the adjacent Fe3+ spins. The value Mr/Ms of nano sample calcined at 500 °C indicates the formation of superparamagnetic phase. Magnetization increase significantly with decreasing particle size, while there is sharp decrease in coercivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang Z, Huang Y, Dong B, Li HL (2005) Fabrication and structural properties of LaFeO3 nanowires by an ethanol-ammonia-based sol–gel template route. Appl Phys A 81:453–457

    Article  Google Scholar 

  2. Zheng W, Liu R, Peng D, Meng G (2000) Hydrothermal synthesis of LaFeO3 under carbonate-containing medium. Mater Lett 43:19–22

    Article  Google Scholar 

  3. Mohapatra SK, Misra M, Mahajan VK, Raja KS (2008) Synthesis of Y-branched TiO2 nanotubes. Mater Lett 62:1772–1774

    Article  Google Scholar 

  4. Zhang SH, Dong XT, Xu SZ, Wang JX (2007) Preparation and characterization of TiO2@SiO2 submicron-scaled coaxial cables via a static electricity spinning technique. Acta Chim Sin 65:2675–2679

    Google Scholar 

  5. Tugova EA, Popova VF, Zvereva IA, Gusarov VV (2006) Phase diagram of the LaFeO3–LaSrFeO4 system. Glass Phys Chem 32:674–667

    Article  Google Scholar 

  6. Parkin SSP, Roche KP, Samant MG, Rice PM, Beyers RB, Scheuerlein RE, O’Sullivan EJ, Brown SL, Bucchigano J, Abraham DW, Lu Y, Rooks M, Trouilloud PL, Wanner RA, Gallagher WJ (1999) Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J Appl Phy 85:5828–5833

    Article  Google Scholar 

  7. Tijare SN, Joshi MV, Padole PS, Mangrulkar PA, Rayalu S, Labhsetwar NK (2012) Photocatalytic hydrogen generation through water splitting on nano-crystalline LaFeO3 perovskite. Int J Hydrog Energy 37:10451–10456

    Article  Google Scholar 

  8. Taylor FH, Buckeridge J, Catlow CRA (2016) Defects and oxide ion migration in the solid oxide fuel cell cathode material LaFeO3. Chem Mater 28:8210–8220

    Article  Google Scholar 

  9. Luning J, Nolting F, Scholl A, Ohldag H, Seo JW, Fompeyrine J, Locquet JP, Stohr J (2003) Determination of the antiferromagnetic spin axis in epitaxial LaFeO3 films by x-ray magnetic linear dichroism spectroscopy. Phys Rev B 67:214433 (1–14)

    Article  Google Scholar 

  10. Tanaka H, Kawai T (1999) Enhancement of magnetoresistance in spin frustrated (La,Sr)MnO3/LaFeO3 artificial lattices. Solid State Commun 112:201–205

    Article  Google Scholar 

  11. He X, Jin K (2016) Engineering charge ordering into multiferroicity. Phys Rev B 93:161108(R) (1–5)

    Google Scholar 

  12. Bruno FY, Grisolia MN, Visani C, Valencia S, Varela M, Abrudan R, Tornos J (2015) Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping. Nat Commun 6:6306 (1–9)

    Article  Google Scholar 

  13. Padal NT, Pawar SA, Kolekar YD, Kulkarni SV, Joshi PB (2005) Structural, dielectric and electron transport properties of LaFeO3 substituted (PbBa)TiO3 ferroelectrics. Ferroelectrics 323:123–129

    Article  Google Scholar 

  14. Afifah N, Saleh R (2017) Effect of crystallite structure and graphene incorporation on photocatalytic performance of LaFeO3. Mat Sci Eng 202:012063 (1–5)

    Google Scholar 

  15. Geller S, Wood EA (1956) Crystallographic studies of perovskite-like compounds. I. rare earth orthoferrites and YFeO3, YCrO3, YAlO3. Acta Cryst 9:563–568

    Article  Google Scholar 

  16. Koehler WC, Wollan EO (1957) Neutron-diffraction study of the magnetic properties of perovskite-like compounds LaBO3. J Phys Chem Solids 2:100–106

    Article  Google Scholar 

  17. Scholl A, Stohr J, Luning J, Seo JW, Fompeyrine J, Siegwart H, Locquet JP, Nolting F, Anders S, Fullerton EE, Scheinfein MR, Padmore HA (2000) Observation of antiferromagnetic domains in epitaxial thin films. Science 287:1014–1015

    Article  Google Scholar 

  18. Selbach SM, Tolchard JR, Fossdal A, Grande T (2012) Non-linear thermal evolution of the crystal structure and phase transitions of LaFeO3 investigated by high temperature X-ray diffraction. J Solid State Chem 196:249–254

    Article  Google Scholar 

  19. Stolen S, Gronvold F, Brinks H, Atake T, Mori H (1998) Heat capacity and thermodynamic properties of LaFeO3 and LaCoO3 from T=13 K to T =1000 K. J Chem Thermodyn 30:365–377

    Article  Google Scholar 

  20. Eibschutz M, Shtrikman S, Treves D (1967) Mossbauer studies of Fe57 in orthoferrites. Phys Rev 156:562–577

    Article  Google Scholar 

  21. Price PM, Butt DP (2015) Stability and decomposition of Ca-substituted lanthanum ferrite in reducing atmospheres. J Am Ceram Soc 98:2881–2886

    Article  Google Scholar 

  22. Beausoleil GL, Price P, Thomsen D, Punnoose A, Ubic R, Misture S, Butt DP (2014) Thermal expansion of alkaline-doped lanthanum ferrite near the neel temperature. J Am Ceram Soc 97:228–234

    Article  Google Scholar 

  23. Kodama RH, Makhlouf SA, Berkowitz AE (1997) Finite size effects in antiferromagnetic NiO nanoparticles. Phys Rev Lett 79:1393–1396

    Article  Google Scholar 

  24. Winkler E, Zysler RD, Mansilla MV, Fiorani D (2005) Surface anisotropy effects in NiO nanoparticles. Phys Rev B 72:132409 (1–4)

    Google Scholar 

  25. Scholl A, Nolting F, Seo JW, Ohldag H, Stöhr J, Raoux S, Locquet JP, Fompeyrine J (2004) Domain-size-dependent exchange bias in Co/LaFeO3. Appl Phys Lett 85:4085–4087

    Article  Google Scholar 

  26. Lee YC, Parkhomov AB, Krishnan KM (2010) Size-driven magnetic transitions in monodisperse MnO nanocrystals. J Appl Phys 107:09E124 (1–3)

    Google Scholar 

  27. Kappenberger P, Martin S, Pellmont Y, Hug HJ, Kortright JB, Hellwig O, Fullerton EE (2003) Direct imaging and determination of the uncompensated spin density in exchange-biased CoO/(CoPt) multilayers. Phys Rev Lett 91:267202 (1-4)

    Article  Google Scholar 

  28. Kappenberger P, Schmid L, Hug HJ (2005) Investigation of the exchange bias effect by quantitative magnetic force microscopy Adv Eng Mat 7:332–338

    Article  Google Scholar 

  29. Nogués J, Leighton C, Schuller IK (2000) Correlation between antiferromagnetic interface coupling and positive exchange bias. Phys Rev B 61:1315–1317

    Article  Google Scholar 

  30. Gruyters M, Riegel D (2001) Strong exchange bias by a single layer of independent antiferromagnetic grains: The CoO/Co model system. Phys Rev B 63:052401 (1–4)

    Google Scholar 

  31. Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young AT, Carey M, Stöhr J (2003) Correlation between exchange bias and pinned interfacial spins. J Phys Rev Lett 91:017203 (1–4)

    Article  Google Scholar 

  32. Ohldag H, Regan T, Stöhr J, Scholl A, Nolting F, Lüning J, Stamm C, Anders S, White RL (2001) Spectroscopic identification and direct imaging of interfacial magnetic spins. Phys Rev Lett 87:247201 (1–4)

    Article  Google Scholar 

  33. Giri S, Patra M, Majumdar S (2011) Exchange bias effect in alloys and compounds. J Phys Condens Matter 23:073201 (1– 23)

    Article  Google Scholar 

  34. Lunkenheimer P, Rudolf T, Hemberger J, Pimenov A, Tachos S, Lichtenberg F, Loidl A (2003) Dielectric properties and dynamical conductivity of LaTiO3: From dc to optical frequencies. Phys Rev B 68:245108 (1–11)

    Article  Google Scholar 

  35. Mochizuki M, Imada M (2003) Orbital-spin structure and lattice coupling in RTiO3 where R=La, Pr, Nd and Sm. Phys Rev Lett 91:167203 (1–4)

    Article  Google Scholar 

  36. Tokura Y, Taguchi T, Okada Y, Fujishima Y, Arima T, Kumagai K, Iye Y (1993) Filling dependence of electronic properties on the verge of metal–mott-insulator transition in Sr1−xLaxTiO3. Phys Rev Lett 70:2126–2129

    Article  Google Scholar 

  37. Coronado RM, Alonso JA, Aguadero A, Coll DP, Diaz MTF (2013) Neutron structural characterization and transport properties of oxidized and reduced La0.5Sr0.5M0.5Ti0.5O3 (M=Mn, Fe) perovskites: Possible electrode materials in solid-oxide fuel cells. J Appl Phys 113:123708 (1–7)

    Article  Google Scholar 

  38. Lau ML, Jiang HG, Perez RJ, Juarez-Islas J, Lavernia EJ (1996) Synthesis of nanocrystalline M50 steel powders by cryomilling. Nanostruct Mater 7:847–856

    Article  Google Scholar 

  39. Popa M, Frantti J, Kakihana M (2002) Lanthanum ferrite LaFeO3+δ nanopowders obtained by the polymerizable complex method. Solid State Ion 154–155:437–445

    Article  Google Scholar 

  40. Chena JC, Chenb WC, Tiena YC, Shihc CJ (2010) Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders prepared by the co-precipitation process. J Alloy Compd 496:364–369

    Article  Google Scholar 

  41. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Crystallogr B 25:925–946

    Article  Google Scholar 

  42. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  43. Georgea M, John AM, Nair SS, Joy PA, Anantharaman MR (2006) Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J Magn Magn Mater 302:190–195

    Article  Google Scholar 

  44. Laberty C, Alphonse P, Demai JJ, Sarda C, Rousset A (1997) Synthesis and characterization of nonstoichiometric nickel manganite spinels NixMn3− x3δ4O4+ δ. Mater Res Bull 32:249–261

    Article  Google Scholar 

  45. Rezlescu N, Rezlescu E, Popa PD, Popovici E, Doroftei C, Ignat M (2013) Preparation and characterization of spinel-type MeFe2O4 (Me=Cu, Cd, Ni and Zn) for catalyst applications. Mater Chem Phys 137:922–927

    Article  Google Scholar 

  46. Vasoya NH, Vanpariya LH, Sakariya PN, Timbadiya MD, Pathak TK, Lakhani VK, Modi KB (2010) Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4. Ceram Int 36:947–954

    Article  Google Scholar 

  47. Li S, Jing L, Fu W, Yang L, Xin B, Fu H (2007) Photoinduced charge property of nanosized perovskite-type LaFeO3 and its relationships with photocatalytic activity under visible irradiation. Mat Res Bull 42:203–212

    Article  Google Scholar 

  48. Nakayama S (2001) LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and comples synthesis methods. J Mater Sci 36:5643–5648

    Article  Google Scholar 

  49. Shter GE, Schwartzman AR, Grader GS (1995) Interrelation of calcination temperature, surface area and densification of oxalate-derived YBCO. Appl Supercond 3:543–550

    Article  Google Scholar 

  50. Andoulsi R, Horchani-Naifer K, Férid M (2012) Preparation of lanthanum ferrite powder at low temperature. Cerâmica 58:126–130

    Article  Google Scholar 

  51. Margellou AG, Papadas IT, Petrakis DE, Armatas GS (2016) Development of enhanced surface area LaFeO3 perovskites using amino acids as templating agents. Mater Res Bull 83:491–501

    Article  Google Scholar 

  52. Mazumder R, Ghosh S, Mondal P, Bhattacharya D, Dasgupta S, Das N, Sen A, Tyagi AK, Sivakumar M, Takami T, Ikuta H (2006) Particle size dependence of magnetization and phase transition near TN in multiferroic BiFeO3. J Appl Phys 100:033908 (1–9)

    Article  Google Scholar 

  53. Huang F, Wang Z, Lu X, Zhang J, Min K, Lin W, Ti R, Xu T, He J, Yue C, Zhu J (2013) Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure. Sci Rep 3:2907 (1– 7)

    Article  Google Scholar 

  54. Maiti R, Basu S, Chakravorty D (2009) Synthesis of nanocrystalline YFeO3 and its magnetic properties. J Magn Magn Mater 321:3274–3277

    Article  Google Scholar 

  55. Vejpravova JP, Niznnasky D, Plocek J, Hutlova A, Rehspringer JL (2005) Superparamagnetism of co-ferrite nanoparticles, in Proceeding of contributed paper, part III (WDS ’05) 518–523

  56. Xue D, Chai G, Li X, Fan X (2008) Effects of grain size distribution on coercivity and permeability of ferromagnets. J Magn Magn Mater 320:1541–1543

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Department of Science and Technology, New Delhi for financial support under INSPIRE Program vide letter No. DST/INSPIRE Fellowship/2012/776 (IF120846). We are also thankful to Dr. Harpreet Singh, Central Research Facility Section, Indian Institute of Technology Ropar, for recording XRD. We also thank Prof. Ramesh Chandra, Institute Instrumentation Center, Indian Institute of Technology, Roorkee, for recording EDX, SEM, and TEM. We are also thankful to Director, Central Instruments Facility, Indian Institute of Technology, Guwahati, for carrying out M–H magnetic measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  • The phases La0.5Sr0.5Ti0.5Fe0.5O3 were synthesized by modified polymeric precursor method at different temperatures.

  • M–H measurements indicate that all the samples exhibit weak ferromagnetic behaviour due to slight canting of the adjacent Fe3+ spins.

  • Magnetization increase significantly with decreasing particle size, while there is sharp decrease in coercivity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, N., Verma, M.K., Sharma, N.D. et al. Superparamagnetic nanosized perovskite oxide La0.5Sr0.5Ti0.5Fe0.5O3 synthesized by modified polymeric precursor method: effect of calcination temperature on structural and magnetic properties. J Sol-Gel Sci Technol 86, 73–82 (2018). https://doi.org/10.1007/s10971-018-4593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4593-2

Keywords

Navigation