Skip to main content
Log in

Comparative Study of Nano- and Bulk La0.5Sr0.5Ti0.5Co0.5O3 Perovskite: Structural, Magnetic, and Transport Properties

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, we report a detailed study of the structural, magnetic, and electrical transport properties of nano- and bulk La0.5Sr0.5Ti0.5Co0.5O3 perovskite with the aim to study the effect of size reduction on resistivity and the antiferromagnetic spin order that is seen in the bulk samples of the cobaltites. Both the phases crystallize with orthorhombic structure in the Pbnm space group. Size reduction causes an increase in both the lattice parameters and unit cell volume. The M–H curve of nanosample shows appearance of hysteresis and gives a clear evidence of the formation of ferromagnetic (FM) moments while almost no RT-FM behavior was found for bulk sample. The resistivity of the nanocrystalline sample has been found to be much lower than that of the bulk sample in the entire temperature range of investigation which could be due to the formation of ferromagnetic moments in the nanocrystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Raccah, P.M., Goodenough, J.G.: First order localized-electron \(\leftrightarrows \) collective electron transition in LaCoO3. Phys. Rev. 155, 932 (1967)

    Article  ADS  Google Scholar 

  2. Heikes, R.R., Miller, R.C., Mazelsky, R.: Magnetic and electrical anomalies in LaCoO3. Phys. 30, 1600 (1964)

    ADS  Google Scholar 

  3. Naiman, C.S., Gilmore, R., DiBartolo, B., Linz, A., Santoro, R.: Interpretation of the magnetic properties of LaCoO3. J. Appl. Phys. 36, 1044 (1965)

    Article  ADS  Google Scholar 

  4. Androulakis, J., Migiakis, P., Giapintzakis, J.: La0.95Sr0.05CoO3: An efficient room-temperature thermoelectric oxide. Appl. Phys. Lett. 84, 1099 (2004)

    Article  ADS  Google Scholar 

  5. Ohtani, T., Kuroda, K., Matsugami, K., Katoh, D.: Electrical resistivity and thermopower of (La1−xSrx) MnO3 and (La1−xSrx)CoO3 at elevated temperature. J. Eur. Ceram. Soc. 20, 2721 (2000)

    Article  Google Scholar 

  6. Roberta, R., Bochera, L., Trottmanna, M., Rellerb, A., Weidenkaff, A.: Synthesis and high-temperature thermoelectric properties of Ni and Ti substituted LaCoO3. J. Solid State Chem. 179, 3893 (2006)

    Article  ADS  Google Scholar 

  7. Jirak, Z., Hejtmanek, J., Knzek, K., Veverka, M.: Electrical resistivity and thermopower measurements of the hole- and electron-doped cobaltites LnCoO3. Phys. Rev. B 78, 014432 (2008)

    Article  ADS  Google Scholar 

  8. Goodenough, J.B.: An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ. J. Phys. Chem. Solids 6, 287 (1958)

    Article  ADS  Google Scholar 

  9. Androulakis, J., Katsarakis, N., Giapintzakis, J.: Ferromagnetic and antiferromagnetic interactions in lanthanum cobalt oxide at low temperatures. Phys. Rev. B 64, 174401 (2001)

    Article  ADS  Google Scholar 

  10. Louca, D., Sarrao, J.L.: Dynamical disorder of spin-induced Jahn-Teller orbitals with the insulator-metal transition in cobaltites. Phys. Rev. Lett. 91, 155501 (2003)

    Article  ADS  Google Scholar 

  11. Nam, D.N.H., Jonason, K., Nordblad, P., Khiem, N.V., Phuc, N.: Coexistence of ferromagnetic and glassy behaviour in the La0.5Sr0.5CoO3 perovskite compound. Phys. Rev. B 59, 4189 (1999)

    Article  ADS  Google Scholar 

  12. Nam, D.N.H., Mathieu, R., Nordblad, P., Khiem, N.V., Phuc, N.X.: Spin-glass dynamics of La0.95Sr0.05CoO3. Phys. Rev. B 62, 8989 (2000)

    Article  ADS  Google Scholar 

  13. Phuc, N.X., Khiem, N.V., Nam, D.N.H.: Field dependence of zero-field-cooled magnetization of La1−xSrxCoO3 (x = 0.05 − 0.5). J. Magn. Magn. Mater. 242, 754 (2002)

    Article  ADS  Google Scholar 

  14. Mukherjee, S., Ranganathan, R., Anilkumar, P.S., Joy, P.A.: Static and dynamic response of cluster glass in La0.5Sr0.5CoO3. Phys. Rev. B 54, 9267 (1996)

    Article  ADS  Google Scholar 

  15. Asai, K., Yokokura, O., Nishimori, N., Chou, H., Tranquada, J.M., Shirane, G., Higuchi, S., Okajima, Y., Kohn, K.: Neutron-scattering study of the spin-state transition and magnetic correlations in La1−xSrxCoO3 (x = 0 and 0.08). Phys. Rev. B: Condens. Matter 50, 3025 (1994)

    Article  ADS  Google Scholar 

  16. Itoh, M., Natori, I., Kubota, S., Motoya, K.: Hole-doping effect on magnetic properties of La1−xSrxCoO3 (0 ≤x ≤ 0.5). J. Magn. Magn. Mater. 140–144, 1811 (1995)

    Article  ADS  Google Scholar 

  17. Goodenough, J.B.: Metallic oxides. In: Reiss, H. (ed.) Solid State Chemistry, vol. 5, pp. 145–399. Oxford, Pergamon (1971)

    Article  Google Scholar 

  18. Tokura, Y., Okimoto, Y., Yamaguchi, S., Taniguchi, H., Kimura, T., Takagi, H.: Thermally induced insulator-metal transition in LaCoO3: A view based on the Mott transition. Phys. Rev. B 58, R1699 (1998)

    Article  ADS  Google Scholar 

  19. Alvarez-Serrano, I., Cuello, G.J., Lopez, M.L., Jimenez-Lopez, A., Pico, C., Rodriguez-Castellon, E., Rodriguez, E., Veiga, M.L.: Magnetic behaviour governed by Co spin transitions in LaCo1−xTixO3 (0 ≤x ≤ 0.5) perovskite oxides. J. Phy. D: Appl. Phys. 41, 195001 (2008)

    Article  ADS  Google Scholar 

  20. Maignan, A., Caignaert, V., Raveau, B., Khomskii, D., Sawatzky, G.: Thermoelectric power of HoBaCo2O5.5: Possible evidence of the spin blockade in cobatites. Phys. Rev. Lett. 93, 026401 (2004)

    Article  ADS  Google Scholar 

  21. Yan, W., Sun, L., Lui, M., Li, W.: Study of sensing characteristics of rare earth pervoskites for alcohol. Acta Sci. Nat. Uni. Jilin. 2, 52 (1991)

    Google Scholar 

  22. Kong, L., Shen, Y.: Gas sensing property of and mechanism of CaxLa1−xFeO3. Ceram. Sens. Actuators B 30, 217 (1996)

    Article  Google Scholar 

  23. Martinez-Coronado, R., Aguadero, A., Perez-Coll, D., Troncoso, L., Alonso, J.A., Fernandez-Diaz, M.T.: Characterization of La0.5Sr0.5Co0.5Ti0.5O3−δ as symmetrical electrode material for intermediate-temperature solid-oxide fuel cells. Int. J. Hydrog. Energy 37, 18310 (2012)

    Article  Google Scholar 

  24. Pechini, M.P.: Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US 3330697 A (1967)

  25. Larson, A.C., Von Dreele, R.B.: General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86, 748 (2004)

    Google Scholar 

  26. Morris, V.N., Farrell, R.A., Sexton, A.M., Morris, M.A.: Lattice constant dependence on particle size for ceria prepared from a citrate sol-gel. J. Phys. Conf. Ser. 26, 119 (2006)

    Article  ADS  Google Scholar 

  27. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  28. Cullity, B.D., Stock, S.R.: Elements of X-ray diffraction. Prentice Hall, New Jersey (2001)

  29. Lopez, M.L., Arillo, M.A., Alvarez-Serrano, I., Martin, P., Rodriguez, E., Pico, C., Veiga, M.L.: Random spin configurations of Co cations in LaCo1−xMgxO3(0 ≤x ≤ 0.20) perovskite oxides: Magnetic and transport properties. J. Mater. Chem. Phys. 120, 387 (2010)

    Article  Google Scholar 

  30. Adler, E., Pfeifer, H.: The influence of grain size and impurities on the magnetic properties of the soft magnetic alloy 47.5% NiFe. IEEE Trans. Magn. 10, 172 (1974)

    Article  ADS  Google Scholar 

  31. Pfeifer, F., Kunz, W.: The influence of grain structure and non magnetic particles on the magnetic properties of high-permeability Ni-Fe alloys. J. Magn. Magn. Mater. 4, 214 (1977)

    Article  ADS  Google Scholar 

  32. Mager, A.: Influence of grain size on the coercive force. Ann. Phys. (Leipzig) 446, 15 (1952)

    Article  ADS  Google Scholar 

  33. Taguchi, H.: Relationship between crystal structure and electrical properties of Nd(Cr1−xFex)O3. J. Solid State Chem. 131, 108 (1997)

    Article  ADS  Google Scholar 

  34. Singh, S., Singh, D.: Structural, magnetic and electrical properties of Fe-doped perovskite manganites La0.8Ca0.15Na0.05 Mn1−xFexO3 (x = 0, 0.05, 0.10 and 0.15). J. Alloys Compds. 702, 249 (2017)

    Article  Google Scholar 

  35. Durand, A.M., Belanger, D.P., Ye, F., Chi, S., Fernandez-Baca, J.A., Booth, C.H., Bhat, M.: Magnetism in nanoparticle LaCoO3. J. Phy. Condn. Matter 25, 38220 (2013)

    Google Scholar 

  36. Ghosh, B., Kar, S., Brar, L.K., Raychaudhuri, A.K.: Electronic transport in nanostructured films of La0.67Sr0.33MnO3. J. Appl. Phys. 98, 094302 (2005)

    Article  ADS  Google Scholar 

  37. Sarkar, T., Raychaudhuri, A.K., Bera, A.K., Yusuf, S.M.: Effect of size reduction on the ferromagnetism of the manganite La1−xCaxMnO3 (x = 0.33). New J. Phys. 12, 123026 (2010)

    Article  ADS  Google Scholar 

  38. Mott, N.F., Davies, E.A.: Electron processes in non-crystalline materials. Clarendon, Oxford (1979)

    Google Scholar 

  39. Snyder, G.J., Hiskes, R., DiCarolis, S., Beasley, M.R., Geballe, T.H.: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996)

    Article  ADS  Google Scholar 

  40. Mott, N.: Conduction in non-crystalline materials, p. 17. Oxford, Clarendon (1993)

    Google Scholar 

Download references

Acknowledgements

The authors are also thankful to Dr. Harpreet Singh, Central Research Facility Section, Indian Institute of Technology Ropar, for recording XRD. Thanks are also due to Prof. Ramesh Chandra, Institute Instrumentation Centre, Indian Institute of Technology, Roorkee, for recording EDX, SEM, and TEM. We are also thankful to the Director, Central Instruments Facility, Indian Institute of Technology, Guwahati, for carrying out the M–H magnetic measurements.

Funding

The authors are thankful to the Department of Science and Technology, New Delhi for financial support under INSPIRE Program vide letter No. DST/INSPIRE Fellowship/2012/776 (IF120846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, N., Sharma, S., Verma, M.K. et al. Comparative Study of Nano- and Bulk La0.5Sr0.5Ti0.5Co0.5O3 Perovskite: Structural, Magnetic, and Transport Properties. J Supercond Nov Magn 31, 3269–3275 (2018). https://doi.org/10.1007/s10948-018-4575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-018-4575-1

Keywords

Navigation