Skip to main content
Log in

Using Taguchi experimental design to reveal the impact of parameters affecting the abrasion resistance of sol–gel based UV curable nanocomposite films on polycarbonate

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work aims at studying the abrasion resistance of differently formulated organic–inorganic hybrid coatings prepared by sol–gel method. The organic phase contained UV curable urethane acrylate oligomers and monomers having different functionalities. The inorganic phase was composed of tetraethyl orthosilicate (TEOS) and 3-methacryloxy propyltrimethoxy silane (MEMO). Through a Taguchi experimental design, the impact of influencing parameters such as molar ratio of precursors, hydrolysis ratio (R), post-curing temperature, post-curing time and weight percentage of inorganic to organic part were investigated. Very high transparency of hybrid coatings indicated that nano sized inorganic phase had formed. MEMO could facilitate the connection of two phases, preventing macro phase separation. However, high levels of MEMO lead to ‘defect structure’ in silica network as well as to decreased transparency and mechanical properties. The optimum condition in which highly transparent films with great abrasion resistance occurred was observed at equimolar ratio of water to alkoxide and TEOS: MEMO ratio being unity. Statistical analysis revealed that thermal post-curing was not significantly important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Damasceno JC, Camargo SS, Cremona M (2002) Thin Solid Films 420–421:195

    Article  Google Scholar 

  2. Latella BA (2007) Thin Solid Films 515:3138

    Article  CAS  Google Scholar 

  3. Fabbri P, Leonelli C, Messori M, Pilati F, Toselli M, Veronesi P, Morlat-The′rias S, Rivaton A, Gardette JL (2008) J Appl Polym Sci 108:1426

    Article  CAS  Google Scholar 

  4. Su CR, Lin CH (2006) Thin Solid Films 498:220

    Article  CAS  Google Scholar 

  5. Damasceno JC (2002) Thin Solid Films 420–421:195

    Article  Google Scholar 

  6. Fabberi P, Messori M (2008) Adv Polym Technol 27:117

    Article  Google Scholar 

  7. Xu J, Pang W, Shi W (2006) Thin Solid Films 514:69

    Article  CAS  Google Scholar 

  8. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  9. Gilberts J, Tinnemans AHA, Hogerheide MP, Koster TPM (1998) J Sol-Gel Sci Technol 11:153

    Article  CAS  Google Scholar 

  10. Zhang L, Zeng Z, Yang J, Chen Y (2004) J Polym Int 53:1413

    Article  Google Scholar 

  11. Wouters MEL, Wolfs DP, van der Linde MC, Hovens JHP, Tinnemans AHA (2004) J Prog Inorg Coatings 51:312

    Article  CAS  Google Scholar 

  12. Han Y-H, Taylor A, Mantle MD, Knowles KM (2007) J Sol-Gel Sci Technol 43:111

    Article  CAS  Google Scholar 

  13. Brinker CJ (1988) J Non-Cryst Solids 100:31

    Article  CAS  Google Scholar 

  14. Engelhardt VG, Altenburg W, Hoebbel D, Weiker W (1977) Z Anorg Allg Chem 418:43

    Article  Google Scholar 

  15. West JK, Zhu BF, Cheng YC, Hench LL (1990) J Non-Cryst Solids 121:51

    Article  CAS  Google Scholar 

  16. Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  17. Vicelli MR (2009) J. Sol-Gel Sci Technol 51:222

    Article  Google Scholar 

  18. van Bommel MJ (1991) J Non-Cryst Solids 128:231

    Article  Google Scholar 

  19. Fidalgo A, Ilharco LM (2001) J Non-Cryst Solids 283:144

    Article  CAS  Google Scholar 

  20. Innocenzi P (2003) J Non-Cryst Solids 316:309

    Article  CAS  Google Scholar 

  21. Galeener FL (1979) Phys Rev B 19:4292

    Article  CAS  Google Scholar 

  22. Decottingnies M, Phalippou J, Zarzycki J (1978) J Mater Sci 13:265

    Article  Google Scholar 

  23. Bertoluzza A, Fagnano C, MOrelli MA, Gottardi V, Guglielmi M (1982) J Non-Cryst Solids 48:117

    Article  CAS  Google Scholar 

  24. Almeida RM, Pantano CG (1990) J Appl Phys 68:4225

    Article  CAS  Google Scholar 

  25. Medda SK, Kundu D, De G (2003) J Non-Cryst. Solids 318:149–156

    CAS  Google Scholar 

  26. De G, Karmakar B, Ganguli D (2000) J Mater Chem 10:2289

    Article  CAS  Google Scholar 

  27. Mazurina CE, Shashkin V (1990) J Non-Cryst Solids 122:285

    Article  Google Scholar 

  28. Seco AM, Goncalves MC, Almeida RM (2000) Mater Sci Eng B 76:193

    Article  Google Scholar 

  29. Perry CC, Li X, Waters DN (1991) Spectrochim Acta 47:1487

    Article  Google Scholar 

  30. Wood D, Rabinovich E (1989) Appl Spectrosc 43:263

    Article  CAS  Google Scholar 

  31. Yahyaei H, Mohseni M, Bastani S (2011) Hybrid conference. France

  32. Wagh PB, Ingale SV (2002) Ceram Int 28:43

    Article  CAS  Google Scholar 

  33. Rao AV, Haranath D (1999) Microporous Mesoporous Mater 30:267

    Article  CAS  Google Scholar 

  34. Zhang H, Wang J, Li L, Song Y, Zhao M, Jian X (2008) Thin Solid Films 517:857

    Article  CAS  Google Scholar 

  35. Mennig M, Oliveira PW, Frantzen A, Schmidt H (1999) Thin Solid Films 351:225

    Article  CAS  Google Scholar 

  36. Medda SK, Kundu D, De G (2003) J Non Cryst Solids 318:149

    Article  CAS  Google Scholar 

  37. Yamaguchi N, Tadanaga K, Matsuda A, Minami T, Tatsumisago M (2006) Surf Coat Technol 201:3653

    Article  CAS  Google Scholar 

  38. Lee MS, Ju Jo N (2002) J Sol-Gel Sci Technol 24:175

    Article  CAS  Google Scholar 

  39. Tadanaga K, Yamaguchi N, Uraoka Y, Matsuda A, Minami T, Tatsumisago M (2008) Thin Solid Films 516:4526

    Article  CAS  Google Scholar 

  40. Priola A, Gozzelino G, Ferrero F (1991) Int J Adhesion Adhesives 11:255

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohseni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yahyaei, H., Mohseni, M. & Bastani, S. Using Taguchi experimental design to reveal the impact of parameters affecting the abrasion resistance of sol–gel based UV curable nanocomposite films on polycarbonate. J Sol-Gel Sci Technol 59, 95–105 (2011). https://doi.org/10.1007/s10971-011-2466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2466-z

Keywords

Navigation