Skip to main content
Log in

Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ag and Ag/SiO2 sols containing nanocrystalline silver particles can be advantageously prepared by solvothermal methods using an autoclave with conventional thermal or microwave heating. In this process, the reduction of silver salts can be realized with alcohols like ethanol in the presence of polyvinylpyrrolidone at temperatures of more than 120 °C. Furthermore a combination of silver salt reduction with hydrolysis of alkoxysilanes during the solvothermal process can yield Ag/SiO2 composite sols. Particle size and crystallinity of as-prepared particles are analyzed by means of X-ray diffraction and high-resolution transmission electron microscopy. Nanosized silver particles gained by this process exhibit antimicrobial properties that are investigated in detail after application on textile fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee HJ, Yeo SY, Jeong SH (2003) J Mater Sci 38:2199. doi:10.1023/A:1023736416361

    Article  CAS  Google Scholar 

  2. Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, Hinder SJ (2008) Biomaterials 29:963. doi:10.1016/j.biomaterials.2007.10.057

    Article  PubMed  CAS  Google Scholar 

  3. Albrecht-Mackenneth K (2003) German Patent DE10137477

  4. Schneider S, Halbig P, Grau H, Nickel U (1994) Photochem Photobiol 60:605. doi:10.1111/j.1751-1097.1994.tb05156.x

    Article  Google Scholar 

  5. Carotenuto G, Pepe GP, Nicolais L (2000) Eur Phys J B 16:11. doi:10.1007/s100510070243

    Article  ADS  CAS  Google Scholar 

  6. Lee HJ, Jeong SH (2004) Text Res J 74:442. doi:10.1177/004051750407400511

    Article  CAS  Google Scholar 

  7. Yuranova T, Rincon AG, Pulgarin C, Laub D, Xantopoulos N, Mathieu H-J, Kiwi J (2006) J Photochem Photobiol Chem 181:363. doi:10.1016/j.jphotochem.2005.12.020

    Article  CAS  Google Scholar 

  8. Haug S, Roll A, Schmid-Grendelmeier P, Johansen P, Wütherich B, Kündig TM, Senti G (2006) Curr Probl Dermatol 33:144. doi:10.1159/000093941

    Article  PubMed  CAS  Google Scholar 

  9. Mahltig B, Haufe H, Böttcher H (2005) J Mater Chem 15:4385. doi:10.1039/b505177k

    Article  CAS  Google Scholar 

  10. Mahltig B, Textor T (2008) Nanosols and Textiles. World Scientific, Singapore

    Google Scholar 

  11. Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) J Mater Chem 18:3180. doi:10.1039/b718903f

    Article  CAS  Google Scholar 

  12. Haufe H, Muschter K, Siegert J, Böttcher H (2008) J Sol-Gel Sci Technol 45:97. doi:10.1007/s10971-007-1636-5

    Article  CAS  Google Scholar 

  13. Xing Y, Yang X, Dai J (2007) J Sol-Gel Sci Technol 43:187. doi:10.1007/s10971-007-1575-1

    Article  CAS  Google Scholar 

  14. Fir M, Vince J, Vuk AS, Vilcnik A, Jovanovski V, Mali G, Orel B, Simomcic B (2007) Acta Chim Slov 54:144

    CAS  Google Scholar 

  15. Li FY, Xing YJ, Ding X (2007) Enzyme Microb Technol 40:1692. doi:10.1016/j.enzmictec.2006.09.007

    Article  CAS  Google Scholar 

  16. Abidi N, Hequet E, Tarimala S, Dai LL (2007) J Appl Polym Sci 104:111. doi:10.1002/app.24572

    Article  CAS  Google Scholar 

  17. Nedelcev T, Krupa I, Lath D, Spírková M (2008) J Sol-Gel Sci Technol 46:47. doi:10.1007/s10971-008-1713-4

    Article  CAS  Google Scholar 

  18. Tomsic B, Simoncic B, Orel B, Cerne L, Forte Tavcer P, Zorko M, Jerman I, Vilcnik A, Kovac J (2008) J Sol-Gel Sci Technol 47:44. doi:10.1007/s10971-008-1732-1

    Article  CAS  Google Scholar 

  19. Mennig M, Schmitt M, Schmidt H (1997) J Sol-Gel Sci Technol 8:1035

    CAS  Google Scholar 

  20. Armelao L, Bertoncello R, De Dominicis M (1997) Adv Mater 9:736. doi:10.1002/adma.19970090913

    Article  CAS  Google Scholar 

  21. Kawashita M, Tsuneyama S, Miyaji F, Kokubo T, Kozuka H, Yamamoto K (2000) Biomaterials 21:393. doi:10.1016/S0142-9612(99)00201-X

    Article  PubMed  CAS  Google Scholar 

  22. Mahltig B, Fiedler D, Böttcher H (2004) J Sol-Gel Sci Technol 32:219. doi:10.1007/s10971-004-5791-7

    Article  CAS  Google Scholar 

  23. Kovalenko DL, Gurin VS, Bogdanchikova NE, Prokopenko VB, Alexxeenko AA, Melnichenko IM (2002) J Alloy Comp 341:208. doi:10.1016/S0925-8388(02)00078-6

    Article  CAS  Google Scholar 

  24. Ritzner B, Villegas MA, Fernández Navarro JM (1997) J Sol-Gel Sci Technol 8:917

    Google Scholar 

  25. Mahltig B, Gutmann E, Meyer DC, Reibold M, Dresler B, Günther K, Faßler D, Böttcher H (2007) J Mater Chem 17:2367. doi:10.1039/b702519j

    Article  CAS  Google Scholar 

  26. De G, Licciulli A, Massaro C, Tapfer L, Catalano M, Battaglin G, Meneghini C, Mazzoldi P (1996) J Non-Cryst Solids 194:225. doi:10.1016/0022-3093(91)00511-F

    Article  ADS  CAS  Google Scholar 

  27. Weiping C, Lide Z (1997) J Phys Condens Matter 9:7257. doi:10.1088/0953-8984/9/34/015

    Article  ADS  CAS  Google Scholar 

  28. Chakrabarti K, Whang CM (2002) Mater Sci Eng B 88:26. doi:10.1016/S0921-5107(01)00908-4

    Article  Google Scholar 

  29. Wu P-W, Dunn B, Doan V, Schwartz BJ, Yablonovitch E, Yamane M (2000) J Sol-Gel Sci Technol 19:249. doi:10.1023/A:1008748608055

    Article  CAS  Google Scholar 

  30. Ritzer B, Villegas MA, Fernández Navarro JM (1995) Glastechn Ber Glass Sci Technol 68(C1):417

    Google Scholar 

  31. Martínez-Castanón G, Martínez JR, Ortega Zarzosa G, Ruiz F, Sánchez-Loredo MG (2005) J Sol-Gel Sci Technol 36:137. doi:10.1007/s10971-005-5285-2

    Article  Google Scholar 

  32. Guzmán MG, Dille J, Godet S (2008) Proceedings of World Academy of Science. Eng Technol 33:367

    Google Scholar 

  33. Zhang Z, Zhao B, Hu L (1996) J Solid State Chem 121:105. doi:10.1006/jssc.1996.0015

    Article  ADS  CAS  Google Scholar 

  34. Chou K-S, Ren C-Y (2000) Mater Chem Phys 64:241. doi:10.1016/S0254-0584(00)00223-6

    Article  CAS  Google Scholar 

  35. Chou K-S, Lai Y-S (2004) Mater Chem Phys 83:82. doi:10.1016/j.matchemphys.2003.09.026

    Article  CAS  Google Scholar 

  36. Deivaraj TC, Lala NL, Lee JY (2005) J Colloid Interface Sci 289:402. doi:10.1016/j.jcis.2005.03.076

    Article  PubMed  CAS  Google Scholar 

  37. Chou K-S, Chen C-C (2007) Microporous Mesoporous Mater 98:208. doi:10.1016/j.micromeso.2006.09.006

    Article  CAS  Google Scholar 

  38. Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, Ávalos-Borja M, Castillón-Barraza FF, Posada-Amarillas A (2008) Mater Res Bull 43:90. doi:10.1016/j.materresbull.2007.02.013

    Article  CAS  Google Scholar 

  39. Hirai H, Nakao Y, Toshima N (1979) J Macromol Sci-Chem A13:727. doi:10.1080/00222337908056685

    Article  Google Scholar 

  40. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mater Chem Phys 94:449. doi:10.1016/j.matchemphys.2005.05.005

    Article  CAS  Google Scholar 

  41. Silvert P-Y, Herrera-Urbina R, Duvauchelle N, Vijayakrishman V, Elhsissen KT (1996) J Mater Chem 6:573. doi:10.1039/jm9960600573

    Article  CAS  Google Scholar 

  42. Ducamp-Sanguesa C, Herrera-Urbina R, Figlarz M (1992) J Solid State Chem 100:272. doi:10.1016/0022-4596(92)90101-Z

    Article  ADS  CAS  Google Scholar 

  43. Liu X, Zhang F, Huang R, Pan C, Zhu J (2008) Cryst Growth Des 8:1916. doi:10.1021/cg701128b

    Article  CAS  Google Scholar 

  44. Chen D, Gao L (2004) J Cryst Growth 264:216. doi:10.1016/j.jcrysgro.2003.12.019

    Article  ADS  CAS  Google Scholar 

  45. Tsuji M, Nishizawa Y, Matsumoto K, Kubokawa M, Miyamae N, Tsuji T (2006) Mater Lett 60:834. doi:10.1016/j.matlet.2005.10.027

    Article  CAS  Google Scholar 

  46. Hah HJ, Koo SM, Lee SH (2003) J Sol-Gel Sci Technol 26:467. doi:10.1023/A:1020710307359

    Article  CAS  Google Scholar 

  47. Goia DV, Matijevic E (1998) N J Chem 11:1203. doi:10.1039/a709236i

    Article  Google Scholar 

  48. Wie G, Nan C-W, Deng Y, Lin Y-H (2003) Chem Mater 15:4436. doi:10.1021/cm034628v

    Article  Google Scholar 

  49. Gao F, Lu Q, Komarneni S (2005) Chem Mater 17:856. doi:10.1021/cm048663t

    Article  CAS  Google Scholar 

  50. Zhang YC, Wang GY, Hu XY, Xing R (2005) J Solid State Chem 178:1609. doi:10.1016/j.jssc.2005.03.009

    Article  ADS  CAS  Google Scholar 

  51. Grocholl L, Wang J, Gillan EG (2003) Mater Res Bull 38:213. doi:10.1016/S0025-5408(02)01028-0

    Article  CAS  Google Scholar 

  52. Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M (2007) J Phys Chem C 111:9095. doi:10.1021/jp068859b

    Article  CAS  Google Scholar 

  53. Tian C, Mao B, Wang E, Kang Z, Song Y, Wang C, Li S, Xu L (2007) Nanotechnology 18:285607. doi:10.1088/0957-4484/18/28/285607

    Article  Google Scholar 

  54. Vigneshwaran N, Kate AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) J Nanosci Nanotechnol 7:1. doi:10.1166/jnn.2007.737

    Article  Google Scholar 

  55. Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Chem Mater 11:882. doi:10.1021/cm9803859

    Article  CAS  Google Scholar 

  56. Marques VS, Cavalcante LS, Sczancoski JC, Volanti DP, Espinosa JWM, Joya MR, Santos MRMC, Pizani PS, Varela JA, Longo E (2008) Solid State Sci 10:1056. doi:10.1016/j.solidstatesciences.2007.11.004

    Article  ADS  CAS  Google Scholar 

  57. Powder Diffraction File 2, release 2001 (2001) Joint Committee on Powder Diffraction Standards–International Centre for Diffraction Data (JCPDS–ICDD)

  58. TOPAS (2000) General Profile and Structure Analysis Software for Powder Diffraction Data, V2.0, Bruker AXS GmbH, Karlsruhe, Germany

  59. Cheary RW, Coelho AA (1992) J Appl Cryst 25:109. doi:10.1107/S0021889891010804

    Article  CAS  Google Scholar 

  60. Inorganic Crystal Structure Database (ICSD) (2008) FINDIT, V1.1.4, FIZ Karlsruhe, Germany

  61. Swenson HE, Tatge E (1953) National Bureau of Standards (U.S.). Circular 539:1

    Google Scholar 

  62. Berar JF, Lelau P (1991) J Appl Cryst 24:1. doi:10.1107/S0021889890008391

    Article  CAS  Google Scholar 

  63. Meyer P, Capponi JJ (1982) Acta Crystallogr B 38:2543. doi:10.1107/S0567740882009352

    Article  Google Scholar 

  64. Zhang WC, Wu XL, Chen HT, Gao YJ, Zhu J, Huang GS, Chu PK (2008) Acta Mater 56:2508. doi:10.1016/j.actamat.2008.01.043

    Article  CAS  Google Scholar 

  65. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Heidelberg

    Google Scholar 

  66. Creighton JA, Eadon DG (1991) J Chem Soc, Faraday Trans 87:3881. doi:10.1039/ft9918703881

    Article  CAS  Google Scholar 

  67. Salz D, Lamber R, Wark M, Baalmann A, Jaeger N (1999) Phys Chem Chem Phys 1:4447. doi:10.1039/a904175c

    Article  CAS  Google Scholar 

  68. Berger A, Berg K-J, Hofmeister H (1991) Z Phys D 20:309. doi:10.1007/BF01543998

    Article  ADS  Google Scholar 

  69. Salz D, Wark M, Baalmann A, Simon U, Jaeger N (2002) Phys Chem Chem Phys 4:2438. doi:10.1039/b111038a

    Article  CAS  Google Scholar 

  70. Yu YY, Chang SS, Lee CL, Wang CRC (1997) J Phys Chem 101:6661. doi:10.1021/jp971656q

    CAS  Google Scholar 

  71. Hövel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Phys Rev B 48:18178. doi:10.1103/PhysRevB.48.18178

    Article  ADS  Google Scholar 

  72. Wang H, Qiao X, Chen J, Wang X, Ding S (2005) Mater Chem Phys 94:449. doi:10.1016/j.matchemphys.2005.05.005

    Article  CAS  Google Scholar 

  73. Sczancoski JC, Cavalcante LS, Joya MR, Espinosa JWM, Pizani PS, Varela JA, Longo E (2009) J Colloid Interface Sci 330:227. doi:10.1016/j.jcis.2008.10.034

    Article  PubMed  CAS  Google Scholar 

  74. Thongtem T, Phuruangrat A, Thongtem S (2008) Curr Appl Phys 8:189. doi:10.1016/j.cap.2007.08.002

    Article  ADS  Google Scholar 

  75. Thongtem T, Phuruangrat A, Thongtem S (2008) Mater Lett 62:454. doi:10.1016/j.matlet.2007.05.059

    Article  CAS  Google Scholar 

  76. Mahltig B, Gutmann E, Meyer DC, Reibold M, Bund A, Böttcher H (2009) J Sol-Gel Sci Technol 49:202. doi:10.1007/s10971-008-1836-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

For financial support we owe many thanks to the German Bundesministerium für Wirtschaft und Technologie within the framework of the research program “Industrielle Vorlaufforschung”—project number: VF070012. We would like to thank Dr. H. Staufenberg, CEM GmbH, who enables the experiments with the microwave autoclave Discover Labmate™.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mahltig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahltig, B., Gutmann, E., Reibold, M. et al. Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J Sol-Gel Sci Technol 51, 204–214 (2009). https://doi.org/10.1007/s10971-009-1972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1972-8

Keywords

Navigation