Skip to main content
Log in

A Novel L-Cys@Cu MOF Embedding onto Cotton Fiber Surfaces to Exert Excellent Antiviral and Antibacterial Effects

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Unpredictable pandemics are likely to pose a significant global threat in the future, and biologically protective textiles will play critical roles in controlling the spread of pathogens during outbreaks. Herein, we present a novel metal–organic framework (MOF) composed of repeating units of a Cu(II)/(L-Cys)2 complex formed through coordination bonds between Cu(II) and L-Cys, while being interconnected by ionic bonds involving Cu(II) and the carboxylate group of L-Cys. After covalently embedding the MOF nanofibers onto cotton fiber surfaces, the resulting fabrics exhibit remarkable virucidal and antibacterial capabilities. Remarkably, even after 200 friction or 50 laundering cycles, the high antiviral ability to inactivate all phi- × 174 within 10 min was maintained, and the bacterial reduction rate against E. coli and S. aureus remained nearly at 100%. The remarkable virucidal effect of the L-Cys@Cu MOF structure is elucidated through a series of α-amylase denaturation simulation tests, providing the first experimental demonstration of the antiviral mechanism, whereby MOF nanofibers induce protein denaturation to inactivate viruses. Moreover, cytotoxicity assessments confirm that the fabrics adorned with MOF nanofibers are safe for human skin. These advantages are promising for the development of protective textiles, highlighting the great potential of nanoscience in combating pandemics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Enserink MSARS. Chronology of the epidemic. Science. 2013;339:1266.

    Article  PubMed  Google Scholar 

  2. Cohen J. Ebola outbreak continues despite powerful vaccine. Science. 2019;364:223.

    Article  CAS  PubMed  Google Scholar 

  3. Kupferschmidt K. Amid panic, a chance to learn about MERS. Science. 2015;348:1183.

    Article  CAS  PubMed  Google Scholar 

  4. Belongia EA, Osterholm MT. COVID-19 and flu, a perfect storm. Science. 2020;368:1163.

    Article  CAS  PubMed  Google Scholar 

  5. Wang G, Wang L, Meng Z, Su X, Jia C, Qiao X, Pan S, Chen Y, Cheng Y, Zhu M. Visual detection of COVID-19 from materials aspect. Adv Fiber Mater. 2022;4:1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Weekly epidemiological update on COVID-19—30 March 2023. World Health Organization. 2023, Accessed 30 March 2023.

  7. Chughtai AA, Seale H, Macintyre CR. Effectiveness of cloth masks for protection against severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis. 2020;26:e200948.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Worby CJ, Chang HH. Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nat Commun. 2020;11:4049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Palmieri V, De Maio F, De Spirito M, Papi M. Face masks and nanotechnology: keep the blue side up. Nano Today. 2021;37:101077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou J, Hu Z, Zabihi F, Chen Z, Zhu M. Progress and perspective of antiviral protective material. Adv Fiber Mater. 2020;2:123.

    Article  CAS  PubMed Central  Google Scholar 

  11. Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional fiber membranes with antibacterial properties for face masks. Adv Fiber Mater. 2023;5:1519.

    Article  CAS  Google Scholar 

  12. Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face masks in the new COVID-19 normal: materials, testing, and perspectives. Research. 2020;2020:7286735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tunon-Molina A, Takayama K, Redwan EM, Uversky VN, Andres J, Serrano-Aroca A. Protective face masks: current status and future trends. ACS Appl Mater Interfaces. 2021;13:56725.

    Article  CAS  PubMed  Google Scholar 

  14. Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang JX, Chen JF, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. Adv Sci. 2022;9:e2102189.

    Article  Google Scholar 

  15. Doos D, Barach P, Alves NJ, Falvo L, Bona A, Moore M, Cooper DD, Lefort R, Ahmed R. The dangers of reused personal protective equipment: healthcare workers and workstation contamination. J Hosp Infect. 2022;127:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Uddin MA, Afroj S, Hasan T, Carr C, Novoselov KS, Karim N. Environmental impacts of personal protective clothing used to combat COVID-19. Adv Sustainable Syst. 2022;6:2100176.

    Article  CAS  PubMed  Google Scholar 

  17. Yao S, Ramakrishna S, Chen G. Recent advances in metal–organic frameworks based on electrospinning for energy storage. Adv Fiber Mater. 2023;5:1592.

    Article  CAS  Google Scholar 

  18. Liu X, Zhang Y, Guo X, Pang H. Electrospun metal–organic framework nanofiber membranes for energy storage and environmental protection. Adv Fiber Mater. 2022;4:1463.

    Article  CAS  Google Scholar 

  19. Pettinari C, Pettinari R, Nicola CD, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev. 2021;446: 214121.

    Article  CAS  Google Scholar 

  20. Yan L, Gopal A, Kashif S, Hazelton P, Lan M, Zhang W, Chen X. Metal organic frameworks for antibacterial applications. Chem Eng J. 2022;435:134975.

    Article  CAS  Google Scholar 

  21. Kumar A, Sharma A, Chen Y, Jones MM, Vanyo ST, Li C, Visser MB, Mahajan SD, Sharma RK, Swihart MT. Copper@ZIF-8 core-shell nanowires for reusable antimicrobial face masks. Adv Funct Mater. 2021;31:2008054.

    Article  CAS  PubMed  Google Scholar 

  22. Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A novel vision of reinforcing nanofibrous masks with metal nanoparticles: antiviral mechanisms investigation. Adv Fiber Mater. 2023;5:1273.

    Article  CAS  Google Scholar 

  23. Li R, Chen T, Pan X. Metal–organic-framework-based materials for antimicrobial applications. ACS Nano. 2021;15:3808.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Z, Nomura N, Muramoto Y, Ekimoto T, Uemura T, Liu K, Yui M, Kono N, Aoki J, Ikeguchi M, Noda T, Iwata S, Ohto U, Shimizu T. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun. 2022;13:4399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meng L, Yang F, Pang Y, Cao Z, Wu F, Yan D, Liu J. Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. Sci Adv. 2022;8:eabq2005.

    Article  CAS  PubMed  Google Scholar 

  26. Xu Q, Ke XT, Cai DR, Zhang YY, Fu FY, Endo T, Liu XD. Silver-based, single-sided antibacterial cotton fabrics with improved durability via an L-cysteine binding effect. Cellulose. 2018;25:2129.

    Article  CAS  Google Scholar 

  27. Xu Q, Li R, Shen L, Xu W, Wang J, Jiang Q, Zhang L, Fu F, Fu Y, Liu X. Enhancing the surface affinity with silver nano-particles for antibacterial cotton fabric by coating carboxymethyl chitosan and L-cysteine. Appl Surf Sci. 2019;497:143673.

    Article  CAS  Google Scholar 

  28. Xiao Y, Shen G, Zheng W, Fu J, Fu F, Hu X, Jin Z, Liu X. Remarkable durability of the antibacterial function achieved via a coordination effect of Cu(II) ion and chitosan grafted on cotton fibers. Cellulose. 2022;29:1003.

    Article  CAS  Google Scholar 

  29. Wu M, Zhang X, Zhao Y, Yang C, Jing S, Wu Q, Brozena A, Miller JT, Libretto NJ, Wu T, Bhattacharyya S, Garaga MN, Zhang Y, Qi Y, Greenbaum SG, Briber RM, Yan Y, Hu L. A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nat Nanotechnol. 2022;17:629.

    Article  CAS  PubMed  Google Scholar 

  30. Li W, Zhang Y, Yu Z, Zhu T, Kang J, Liu K, Li Z, Tan SC. In situ growth of a stable metal–organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications. ACS Nano. 2022;16:14779.

    Article  CAS  PubMed  Google Scholar 

  31. Neufeld MJ, Harding JL, Reynolds MM. Immobilization of metal–organic framework copper(II) benzene-1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst. ACS Appl Mater Interfaces. 2015;7:26742.

    Article  CAS  PubMed  Google Scholar 

  32. Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J Am Chem Soc. 2019;141:849.

    Article  CAS  PubMed  Google Scholar 

  33. Ding S, Li P, Zhang T, Wang X. Coordination of copper ion crosslinked composite beads with enhanced toxins adsorption and thin-film nanofibrous composite membrane for realizing the lightweight hemodialysis. Adv Fiber Mater. 2022;4:556.

    Article  CAS  Google Scholar 

  34. Zhao M, Huang Z, Wang S, Zhang L, Zhou Y. Design of L-cysteine functionalized UiO-66 MOFs for selective adsorption of Hg(II) in aqueous medium. ACS Appl Mater Interfaces. 2019;11:46973.

    Article  CAS  PubMed  Google Scholar 

  35. Liang M, Wang F, Liu M, Yu J, Si Y, Ding B. N-halamine functionalized electrospun poly(vinyl alcohol-co-ethylene) nanofibrous membranes with rechargeable antibacterial activity for bioprotective applications. Adv Fiber Mater. 2019;1:126.

    Article  Google Scholar 

  36. Wang S, Li J, Cao Y, Gu J, Wang Y, Chen S. Non-leaching, rapid bactericidal and biocompatible polyester fabrics finished with benzophenone terminated N-halamine. Adv Fiber Mater. 2021;4:119.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yao A, Jiao X, Chen D, Li C. Bio-inspired polydopamine-mediated Zr-MOF fabrics for solar photothermal-driven instantaneous detoxification of chemical warfare agent simulants. ACS Appl Mater Interfaces. 2020;12:18437.

    Article  CAS  PubMed  Google Scholar 

  38. Rade PP, Giram PS, Shitole AA, Sharma N, Garnaik B. Physicochemical and in vitro antibacterial evaluation of metronidazole loaded eudragit S-100 nanofibrous mats for the intestinal drug delivery. Adv Fiber Mater. 2021;4:76.

    Article  Google Scholar 

  39. Wang C, Luo X, Jia Z. Linkage, charge state and layer of L-cysteine on copper surfaces. Colloids Surf B. 2017;160:33.

    Article  CAS  Google Scholar 

  40. Hulliger J. Chemistry and crystal growth. Angew Chem Int Ed. 1994;33:143.

    Article  Google Scholar 

  41. Wang Y, Li L, Liang H, Xing Y, Yan L, Dai P, Gu X, Zhao G, Zhao X. Superstructure of a metal–organic framework derived from microdroplet flow reaction: an intermediate state of crystallization by particle attachment. ACS Nano. 2019;13:2901.

    Article  CAS  PubMed  Google Scholar 

  42. Molco M, Laye F, Samperio E, Ziv Sharabani S, Fourman V, Sherman D, Tsotsalas M, Woll C, Lahann J, Sitt A. Performance fabrics obtained by in situ growth of metal–organic frameworks in electrospun fibers. ACS Appl Mater Interfaces. 2021;13:12491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu Y, Xu Z, Yan K, Zhao H, Zhang J. One-step synthesis of CuO–Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-cysteine. ACS Appl Mater Interfaces. 2017;9:40452.

    Article  CAS  PubMed  Google Scholar 

  44. Bu Y, Xu T, Geng S, Fan S, Li Q, Su J. Ferroelectrics-electret synergetic organic artificial synapses with single-polarity driven dynamic reconfigurable modulation. Adv Funct Mater. 2023;33:2213741.

    Article  CAS  Google Scholar 

  45. Liu X, Wang F, Su J, Zhou Y, Ramakrishna S. Bio-inspired 3D artificial neuromorphic circuits. Adv Funct Mater. 2022;32:2113050.

    Article  CAS  Google Scholar 

  46. Li W, Liu K, Zhang Y, Guo S, Li Z, Tan SC. A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties. Chem Eng J. 2022;446:137195.

    Article  CAS  Google Scholar 

  47. de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM. An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J. 2013;234:423.

    Article  Google Scholar 

  48. Bhidet V, Salkalachent S, Rastogit A, Raot C, Hegde MS. Depth profile composition studies of thin film CdS: Cu,S solar cells using XPS and AES. J Phys D Appl Phys. 1981;14:1647.

    Article  Google Scholar 

  49. Zhao X, Zhang Y, Han J, Jing H, Gao Z, Huang H, Wang Y, Zhong C. Design of “turn-on” fluorescence sensor for L-cysteine based on the instability of metal–organic frameworks. Microporous Mesoporous Mater. 2018;268:88.

    Article  CAS  Google Scholar 

  50. Wang C, Luo X, Jia Z, Shi Q, Zhu R. Horseradish peroxidase immobilized on copper surfaces and applications in selective electrocatalysis of p-dihydroxybenzene. Appl Surf Sci. 2017;406:170.

    Article  CAS  Google Scholar 

  51. Stevens Laura J, Pruijssers Andrea J, Lee Hery W, Gordon Calvin J, Tchesnokov Egor P, Gribble J, George Amelia S, Hughes Tia M, Lu X, Li J, Perry Jason K, Porter Danielle P, Cihlar T, Sheahan Timothy P, Baric Ralph S, Götte M, Denison Mark R. Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med. 2022;14:eabo0718.

    Article  CAS  PubMed  Google Scholar 

  52. Das K, Aramini JM, Ma LC, Krug RM, Arnold E. Structures of influenza a proteins and insights into antiviral drug targets. Nat Struct Mol Biol. 2010;17:530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K, Xi J, Liu Q, Gu Y, Yin Y, Hu J, Liu X, Peng D, Gao L. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics. 2019;9:6920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cieślak M, Kowalczyk D, Krzyżowska M, Janicka M, Witczak E, Kamińska I. Effect of Cu modified textile structures on antibacterial and antiviral protection. Materials. 2022;15:6164.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zaremba P, Zaremba A, Naumenko K, Yelipashev M, Zahorodnia S. In vitro and in silico studies of the antiviral activity of polyhydrated fullerenes against influenza a (H1N1) virus. Sci Rep. 2023;13:10879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu Z, Long H, Wang Y, Shen C, Chen D. Antimicrobial nonwoven fabrics incorporated with levulinic acid and sodium dodecyl sulfate for use in the food industry. Foods. 2022;11:2369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gopal V, Nilsson-Payant BE, French H, Siegers JY, Yung W-S, Hardwick M, Te Velthuis AJW. Zinc-embedded polyamide fabrics inactivate SARS-CoV-2 and influenza a virus. ACS Appl Mater Interfaces. 2021;13:30317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A journey from structure to function of bacterial lipopolysaccharides. Chem Rev. 2022;122:15767.

    Article  PubMed  Google Scholar 

  59. May KL, Grabowicz M. The bacterial outer membrane is an evolving antibiotic barrier. Proc Natl Acad Sci. 2018;115:8852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small. 2012;8:3326.

    Article  CAS  PubMed  Google Scholar 

  61. Wang L, Wu Y, Yao S, Ge H, Zhu Y, Chen K, Chen WZ, Zhang Y, Zhu W, Wang HY, Guo Y, Ma PX, Ren PX, Zhang XL, Li HQ, Ali MA, Xu WQ, Jiang HL, Zhang LK, Zhu LL, Ye Y, Shang WJ, Bai F. Discovery of potential small molecular SARS-Cov-2 entry blockers targeting the spike protein. Acta Pharmacol Sin. 2022;43:788.

    Article  CAS  PubMed  Google Scholar 

  62. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-Cov-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020;41:1141.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-Cov-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23:3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51873195, 51803186), the Natural Science Foundation of Zhejiang Province (No. LZ22E030004), and Special Support Program for High-Level Talents of Zhejiang Province, Outstanding Talent Project (No. 2021R51003), the National Key Research and Development Program of China (2021YFA1301100, 2021YFA1301101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongyan Diao or Xiangdong Liu.

Ethics declarations

Conflict of Interest

The authors declare that there is no financial and non-financial competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 16288 KB)

Supplementary file2 (DOCX 11164 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Jiang, J., Cai, R. et al. A Novel L-Cys@Cu MOF Embedding onto Cotton Fiber Surfaces to Exert Excellent Antiviral and Antibacterial Effects. Adv. Fiber Mater. 6, 444–457 (2024). https://doi.org/10.1007/s42765-023-00365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00365-6

Keywords

Navigation