Skip to main content
Log in

Removal of uranium, cadmium and iron ions from phosphoric acid solution using amberjet 1200 H resin: an experimental, isotherm and kinetic study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Amberjet 1200 H resin is an industrial strong acid cation exchanger bearing sulfonic reactive groups that were tested for the removal of uranium, cadmium and iron ions from the phosphoric acid solution. Batch experiments were performed to assess the preferred performance of Amberjet 1200 H resin in uranium, cadmium and iron ions sorption. Impact of shaken time, phosphoric acid molarity, sorbent amount, initial ions concentrations and the stirring speed were investigated. The physical study was also determined to explain the nature of ions sorption. The studied resin was agreed with both Langmuir isotherm and Pseudo second-order reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nath M, Tuteja N (2016) NPKS uptake, sensing and signaling and miRNAs in plant nutrient stress. Protoplasma 253:767–786

    CAS  PubMed  Google Scholar 

  2. Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R (2015) NPK macronutrients and microRNA homeostasis. Front Plant Sci 6:451

    PubMed  PubMed Central  Google Scholar 

  3. Gilmour R (2017) Phosphoric Acid Purification, Uses, Technology and Economics. CRC Press

    Google Scholar 

  4. Grzmil B, Kic B, Zienkiewicz M (2011) Effect of raw materials quality on the content of contaminations in raw phosphoric acid from the wet process. Przem Chem 08:1535–1540

    Google Scholar 

  5. Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59

    CAS  Google Scholar 

  6. El Zrelli R, Rabaoui L, Daghbouj N, Abda H, Castet S, Josse C, van Beek P, Souhaut M, Michel S, Bejaoui N, Courjault-Rade P (2018) Characterization of phosphate rock and phosphogypsum from Gabes phosphate fertilizer factories (SE Tunisia): high mining potential and implications for environmental protection. Environ Sci Pollut Res 25:14690–14702

    Google Scholar 

  7. Abdel-Ghafar HM, Abdel-Aal EA, Ibrahim MAM, El-Shall H, Ismail AK (2019) Purification of high iron wet-process phosphoric acid via oxalate precipitation method. Hydrometallurgy 184:1–8

    CAS  Google Scholar 

  8. Taha MH, Masoud AM, Khawassek YM, Hussein AEM, Aly HF, Guibal E (2020) Cadmium and iron removal from phosphoric acid using commercial resins for purification purpose. Sci Pollut Res Environ. https://doi.org/10.1007/s11356-020-09342-7

    Article  Google Scholar 

  9. Ahmed IM, Ammanoeil RN, Saad EA, Daoud JA (2019) Purification of crude phosphoric acid and leached apatite by solvent extraction with CYANEX 923 in kerosene. Periodica Polytechnica-Chemical Engineering 63:122–129

    CAS  Google Scholar 

  10. Chen M, Li J, Jin Y, Luo J, Zhu X, Yu D (2018) Efficient solvent extraction of phosphoric acid with dibutyl sulfoxide. J Chem Technol Biotechnol 93:467–475

    CAS  Google Scholar 

  11. Li X, Li J, Jin Y, Chen M, Feng D, Guo Y (2017) Wet process of phosphoric acid purification by solvent extraction using tri-n-butyl phosphate and cyclohexanol mixtures. J Serb Chem Soc 82:579–592

    CAS  Google Scholar 

  12. Li X, Li J, Luo J, Jin Y, Zou D (2017) Purification of wet process phosphoric acid by solvent extraction using cyclohexanol. Solvent Extr Res Dev - Jpn 24:23–35

    CAS  Google Scholar 

  13. Sanghani R (2014) Novel technique for purification of fertilizer phosphoric acid with simultaneous uranium extraction. In: Amalhay M (eds) Symphos 2013 - 2nd International symposium on innovation and technology in the phosphate industry. Procedia Eng, pp 225–232

  14. Ye C (2013) Wet process phosphoric acid purification by solvent extraction using N-octanol and tributylphosphate mixtures. J Chem Technol Biot 09:1715–1720

    Google Scholar 

  15. Ye C, Li J (2013) Wet process phosphoric acid purification by solvent extraction using N-octanol and tributylphosphate mixtures. J Chem Technol Biotechnol 88:1715–1720

    CAS  Google Scholar 

  16. Kherfan S (2011) Extraction of cadmium from phosphoric acid by trioctylphosphine oxide/kerosene solvent using factorial design. Period Polytech Chem Eng 55:45

    CAS  Google Scholar 

  17. Mahmoud MHH, Mohsen Q (2011) Enhanced solvent extraction of cadmium and iron from phosphoric acid in chloride media. Physicochem Probl Miner Process 47:27–40

    CAS  Google Scholar 

  18. Samarane K, Boulif R, Dhiba D, Bouhaouss A (2018) Improvements and intensification of industrial co-crystallization process for cadmium removal from wet phosphoric acid. Int J Eng Sci Res Technol 7:152–163

    Google Scholar 

  19. Raii M, Minh DP, Sanz FJE, Nzihou A (2014) Lead and cadmium removal from aqueous solution using an industrial gypsum by-product. Procedia Eng 83:415–422

    CAS  Google Scholar 

  20. Balkaya N, Cesur H (2008) Adsorption of cadmium from aqueous solution by phosphogypsum. Chem Eng J 140:247–254

    CAS  Google Scholar 

  21. Dotremont C, Wilms D, Devogelaere D, Van Haute A, Van Dijk J (1991) "Recovery of cadmium by crystallization of cadmium carbonate in a fluidized-bed reactor. Chemistry for the Protection of the Environment". Springer, US, Boston, MA, pp 741–751

    Google Scholar 

  22. Masoud AM (2020) Sorption behavior of uranium from Sulfate media using purolite A400 as a strong base anion Exchange resin. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1763974

    Article  Google Scholar 

  23. Kussainova MZ, Chernyakova RM, Jussipbekov UZ, Pasa S (2019) Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid. J Mol Struct 1184:49–58

    CAS  Google Scholar 

  24. Massoud A, Masoud AM, Youssef WM (2019) Sorption characteristics of uranium from sulfate leach liquor by commercial strong base anion exchange resins. J Radioanal Nucl Chem 322:1065–1077

    CAS  Google Scholar 

  25. Khawassek YM, Masoud AM, Taha MH, Hussein AEM (2018) Kinetics and thermodynamics of uranium ion adsorption from waste solution using Amberjet 1200 H as cation exchanger. Journal of Radio analytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-017-5692-1

    Article  Google Scholar 

  26. Leng X, Zhong Y, Dehua Xu, Wang X, Yang L (2018) Mechanism and kinetics study on removal of Iron from phosphoric acid by Cation exchange resin. CJCHE. https://doi.org/10.1016/j.cjche.2018.09.012

    Article  Google Scholar 

  27. Tang C, Qiu Y, Wang Y (2018) Kinetic studies on Al3+ removal from phosphoric acid by cation exchange resin. Can J Chem Eng 4:944–954

    Google Scholar 

  28. Wang L, Liu L, Zhang Z (2018) 17 α-Ethinylestradiol removal from water by magnetic ion exchange resin. Chinese J Chem Eng 4:864–869

    Google Scholar 

  29. Younes AA, Masoud AM, Taha MH (2018) Uranium sorption from aqueous solutions using polyacrylamide-based chelating sorbents. Sep Sci Technol. https://doi.org/10.1080/01496395.2018.1467450

    Article  Google Scholar 

  30. Qiu Y, Tang C, Zhang Z (2017) Study on the removal mechanism of Mg2+ by ion exchange resin from wet-process phosphoric acid. Desalin Water Treat 185–192

  31. Kussainova MZ, Pasa S, Zhumasilovich DU, Chernyakova RM, Atlan M, Temel H (2016) Comparative sorption capacity of Pb(II) and Cd(II) by natural zeolite in phosphoric acid medium. Desalin Water Treat 57:12561–12571

    CAS  Google Scholar 

  32. Shen C, Chang Y, Fang L (2016) Selective removal of copper with polystyrene-1, 3-diaminourea chelating resin: Synthesis and adsorption studies. New J Chem 3588

  33. Aydin Ö, Özmetin C, Korkmaz M (2015) A semiempirical kinetic model for removal of iron (Fe3+) from saturated boric acid solution by ion exchange using amberlite IR–120 resin. Particul Sci Technol 5:505–511

    Google Scholar 

  34. El-Zahhar AA, Ali MM, Ahmed AM, Khalifa ME, Abdel-Bary EM (2015) Removal of iron from wet-process phosphoric acid using titanium silicate-polymer composite. CTAIJ 10(6):210–219

  35. Gupta VK, Nayak A, Agarwal S (2015) Bioadsorbents for remediation of heavy metals: current status and their future prospects. Environ Eng Res 20:1–018

    Google Scholar 

  36. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene- an overview. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-013-1524-1

  37. Jiexin L, Pengfei Y, Chunxia Z et al (2019) Preparation of sulfhydryl functionalized magnetic SBA-15 and its high-efficiency adsorption on uranyl ion in solution. Environ Sci Pollut Res 26:34487–34498. https://doi.org/10.1007/s11356-019-06329-x)

    Article  CAS  Google Scholar 

  38. Xu Y, Ke G, Yin J et al (2019) Synthesis of thiol-functionalized hydrotalcite and its application for adsorption of uranium (VI). J Radioanal Nucl Chem 319:791–803. https://doi.org/10.1007/s10967-018-6376-1

    Article  CAS  Google Scholar 

  39. Kouzbour S, Gourich B, Gros F, Vial C, Allam F, Stiriba Y (2019) Comparative analysis of industrial processes for cadmium removal from phosphoric acid: a review. Hydrometallurgy 188:222–247

    CAS  Google Scholar 

  40. Elleuch MBC, Amor MB, Pourcelly G (2006) Phosphoric acid purification by a membrane process: Electrodeionization on ion-exchange textiles. Sep Purif Technol 51:285–290

    Google Scholar 

  41. Kislik V, Eyal A (2000) Aqueous hybrid liquid membrane process for metal separation: Part II. Selectivity of metals separation from wet-process phosphoric acid. J Membr Sci 169:133–146

    CAS  Google Scholar 

  42. Urtiaga AM, Alonso A, Ortiz I, Daoud JA, El-Reefy SA, Pérez de Ortiz S, Gallego T (2000) Comparison of liquid membrane processes for the removal of cadmium from wet phosphoric acid. J Membr Sci 164:229–240

    CAS  Google Scholar 

  43. Amin MI, Gado HS, Youssef WM (2019) Precipitation of iron from wet process phosphoric acid using oxalic acid and potassium hexyl xanthate (PHX). Chem Pap 73:1871–1877

    CAS  Google Scholar 

  44. Zieliński J, Huculak-Mączka M, Kaniewski M, Nieweś D, Hoffmann K, Hoffmann J (2019) Kinetic modelling of cadmium removal from wet phosphoric acid by precipitation method. Hydrometallurgy 190:105–157

    Google Scholar 

  45. Mousa MA, Gado HS, Abdelfattah MMG, Madi AE, Taha MH, Roshdy OE (2013) Removal of Uranium from crude Phosphoric acid by precipitation technique. Arab J Nuclear Sci Appl 46(5):38–47

    Google Scholar 

  46. Masoud AM, Saeed M, Taha MH, El-Maadawy MM (2020) Uranium adsorption from Bahariya Oasis leach liquor via TOPO impregnated bentonite material; Isothermal, kinetic and thermodynamic studies. Egypt J Chem 63(2):721–741

    Google Scholar 

  47. Reyes LH, Medina IS, Mendoza RN, Vazquez JR, Rodriguez MA, Guibal E (2001) Extraction of cadmium from phosphoric acid using resins impregnated with organophosphorus extractants. Ind Eng Chem Res 40:1422–1433

    Google Scholar 

  48. Khawassek YM (2014) Production of commercial uranium concentrate from El-Sela Shear zone mineralized ore material, South Eastern Desert- Egypt, at Inshas Pilot plant unit. Nuclear Sciences Scientific Journal 3:169–179

    Google Scholar 

  49. Purkayastha D, Mishra U, Biswas S (2014) A comprehensive review on Cd(II) removal from aqueous solution. J Water Process Eng 2:105–128

    Google Scholar 

  50. Bai Y, Bartkiewicz B (2009) Removal of cadmium from wastewater using ion exchange resin Amberjet 1200H columns. Pol J Environ Stud 18(6):1191–1195

    CAS  Google Scholar 

  51. Rengaraj S, Kim Y, Joo CK, Choi K, Yi J (2004) Batch adsorptive removal of copper ions in aqueous solutions by ion exchange resins: 1200H and IRN97H. Korean J Chem Eng 21(1):187–194

    CAS  Google Scholar 

  52. Zewail TM, Yousef NS (2015) Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alexandria Eng J 54(1):83–90

    Google Scholar 

  53. Taha MH (2020) Solid-liquid extraction of uranium from industrial phosphoric acid using macroporous cation exchange resins: MTC1600H, MTS9500 and MTS9570. Sep Sci Technol. https://doi.org/10.1080/01496395.2020.1787446

    Article  Google Scholar 

  54. Marczenko Z, Balcerzak M (2000) Separation, preconcentration and spectrophotometry in inorganic analysis. Elsevier Science B.V., Amsterdam, p 521

  55. Farag NM, EL-sayed GO, Morsy AMA, Taha MH, Yousif MM, (2015) Modification of Davies & Gray method for uranium determination in phosphoric acid solutions. Int J Adv Res 3:323–337

    CAS  Google Scholar 

  56. Nakamoto K (2002) Infrared and Raman Spectra of Inorganic and Coordination Compounds. In: Chalmers JM, Griffiths PR (eds) Handbook of Vibrational Spectroscopy, vol 3. Wiley, Chichester, UK, pp 1872–1892

    Google Scholar 

  57. Silverstein RM, Bassler GG, Morrill TC (1991) Spectrometric Identification of Organic Compounds. John Wiley, Singapore

    Google Scholar 

  58. Fernanda MB, Coutinho SM, Rezende BG, Soares, (2006) Characterization of Sulfonated Poly(styrene– divinylbenzene) and Poly(divinylbenzene) and its Application as Catalysts in Esterification Reaction. J Appl Polym Sci 102:3616–3627

    Google Scholar 

  59. El Naggar AMA, Ali MM, Abdel SA, Maksoud MH, Taha AS, Morshedy AA, Elzoghby, (2019) Waste generated bio-char supported co-nanoparticles of nickel and cobalt oxides for efcient adsorption of uranium and organic pollutants from industrial phosphoric acid. J Radioanal Nucl Chem 320:741–755

    Google Scholar 

  60. Morsy AMA, Hussein AEM (2012) Retention of uranium from liquid waste solution onto Egyptian natural clay. Isotope Radiat Res 44:537–550

    Google Scholar 

  61. Zou Y, Wang X, Wu F, Yu S, Hu Y, Song W, Wang X (2016) Controllable synthesis of Ca–Mg–Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustain Chem Eng 5(1):1173–1185

    Google Scholar 

  62. Yao W, Yu S, Wang J, Zou Y, Lu S, Ai Y, Wang X (2017) Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides. Chem Eng J 307:476–486

    CAS  Google Scholar 

  63. Langmuir I (1918) Am Chem Soc 40(9):1361

    CAS  Google Scholar 

  64. Freundlich H (1906) Phys Chem Soc 40:1361

    Google Scholar 

  65. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156(1):2–10

    CAS  Google Scholar 

  66. Silva RA, Hawboldt K, Zhang Y (2018) Application of resins with functional groups in the separation of metal ions/species – A review. Mineral Process. Extr Metall Rev 1–19

  67. Rajak VK, Kumar S, Thombre NV, Mandal A (2018) Synthesis of activated charcoal from saw-dust and characterization for adsorptive separation of oil from oil-in-water emulsion. Chem Eng Commun 205(7):897–913

    CAS  Google Scholar 

  68. Galhoum AA, Mahfouz MG, Abdel-Rehem ST, Gomaa NA, Atia AA, Vincent T, Guibal E (2015) Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd(III), Dy(III) and Yb(III)]. Cellulose 22(4):2589–2605

    CAS  Google Scholar 

  69. Taha MH (2021) Sorption of U(VI), Mn (II), Cu(II), Zn(II), and Cd(II) from multi-component phosphoric acid solutions using MARATHON C resin. Environ Sci Pollut Res 28:12475–12489. https://doi.org/10.1007/s11356-020-11256-3

    Article  CAS  Google Scholar 

  70. Ali MM, Taha MH, Kandil KM, Al-Zughbi AA, Musa MA (2013) Kinetics and thermodynamics of uranium adsorption from commercial di-hydrate phosphoric acid using D2EHPA-impregnated charcoal. 46(5):29–37

  71. Cheira MF, Ibrahium HZ, Elsayd AM (2014) Potentiality of white sand for the purification of wet process phosphoric acid from some metallic elements (U, Zn, Cd). 9(6):224–233

  72. El-Bayaa AA, Badawy NA, Gamal AM, Zidan IH, Mowafy AR (2011) Purification of wet process phosphoric acid by decreasing iron and uranium using white silica sand. J Hazard Mater 190(1–3):324–329. https://doi.org/10.1016/j.jhazmat.2011.03.037

    Article  CAS  PubMed  Google Scholar 

  73. Taha MH, El-Maadawy MM, Hussein AEM, Youssef WM (2018) Uranium sorption from commercial phosphoric acid using kaolinite and metakaolinite. J Radioanal Nucl Chem 317:685–699

    CAS  Google Scholar 

  74. Amin MI (2020) Removal of iron from wet process phosphoric acid using ion exchange method by Puromet MTS9570 resin. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1769616

    Article  Google Scholar 

  75. Kang HJ, Kim JH (2019) Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures onto Sylopute. Biotechnol Bioprocess Eng 24:513–521

    CAS  Google Scholar 

  76. Kim YS, Kim JH (2019) Isotherm, kinetic and thermodynamic studies on the adsorption of paclitaxel onto Sylopute. J Chem Thermodyn 130:104–113

    CAS  Google Scholar 

  77. Taha MH, Abdel Maksoud SA, Ali MM, El Naggar AMA, Morshedy AS, Elzoghby AA (2019) Conversion of biomass residual to acid-modified bio-chars for efficient adsorption of organic pollutants from industrial phosphoric acid: an experimental, kinetic and thermodynamic study. Int J Environ Anal Chem 1–24

  78. Martell AE, Hancock RD (2013) Metal Complexes in Aqueous Solutions. Springer Science & Business Media, New York

  79. Zaganiaris EJ (2013) Ion Exchange Resins and Adsorbents in Chemical Processing. BoD-Books on Demand, Paris, France

    Google Scholar 

  80. Wu FC, Tseng RL, Juang RS (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153:1–8

    CAS  Google Scholar 

  81. Zhang R, Chen C, Li J, Wang X (2015) Preparation of montmorillonite @ carbon composite and its application for U(VI) removal from aqueous solution. Appl Surf Sci 349:129–137

    CAS  Google Scholar 

  82. Malash GF, El-Khaiary MI (2010) Piecewise linear regression: a statistical method for the analysis of experimental adsorption data by the intraparticle-diffusion models. Chem Eng J 163:256–263

    CAS  Google Scholar 

  83. Zagorodni AA (2006) Ion Exchange Materials: Properties and Applications. Elsevier, Oxford, UK

    Google Scholar 

  84. Beltrami D, Mercier-Bion F, Cote G, Mokhtari H, Courtaud B, Simoni E, Chagnes A (2014) Investigation of the speciation of uranium(VI) in concentrated phosphoric acid and in synergistic extraction systems by Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS). J Mol Liq 190:42–49. https://doi.org/10.1016/j.molliq.2013.10.013

    Article  CAS  Google Scholar 

  85. Kratz S, Schick J, Schnug E (2016) Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Science of the Total Environment 542:1013–1019

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Roshdy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshdy, O.E. Removal of uranium, cadmium and iron ions from phosphoric acid solution using amberjet 1200 H resin: an experimental, isotherm and kinetic study. J Radioanal Nucl Chem 329, 85–101 (2021). https://doi.org/10.1007/s10967-021-07792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07792-y

Keywords

Navigation