Skip to main content
Log in

Removal of some radionuclides from contaminated solution using natural clay: bentonite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Clays and specially bentonite are widely used as natural adsorbents for wastewater treatment and as a barrier in landfills to prevent the contamination of subsoil and groundwater by leachates containing radioactive materials. The adsorption of four radionuclides, 134Cs(I), 90Sr(II), 133Ba(II) and 152Eu(III) by an Egyptian bentonite (Bent) and its modified Na+ form (Na-Bent) collected from a deposit within Alexandria governorate was investigated as a function of different parameters. The batch equilibrium technique was used and the kinetic results showed that the equilibrium was mostly reached within 10 min and the kinetic data fit well to the pseudo-second order model. The Langmuir model fits well the experimental data of all metals adsorption on Bent and Na-Bent except for adsorption of 133Ba on Bent, while 152Eu adsorption on Na-Bent fits better to the Freundlich model rather than to the Langmuir. Both Bent and Na-Bent fit well to the D-R model with adsorption energy of E > 8 kJ mol−1 that means that the adsorption reaction is expected to be controlled by both cation exchange and surface complexation reactions. At lower concentrations, the values of distribution coefficient (K d), follow the order of 152Eu > 90Sr > 134Cs > 133Ba for Bent and Na-Bent. The K d of 152Eu is higher than that of 134Cs in Bent up to 150 mg L−1. This order changes at higher concentration where the K d of 134Cs becomes higher than 152Eu after 150 mg L−1 for Bent and after 200 mg L−1 for Na-Bent. Na-Bent is preferred than Bent for the uptake of 90Sr and 134Cs especially at high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gee GW, Meyer PD, Ward AL (2005) Nuclear waste disposal. In: Encyclopedia of soils in the environment, p 56–63

  2. Wang X, Tan X, Ning Q, Chen C (2005) Simulation of radionuclide’s 99Tc and 243Am migration in compacted bentonite. Appl Radiat Isot 62(5):759–764

    Article  CAS  Google Scholar 

  3. Galambos M, Paucova V, Kufcakova J, Rosskopfova O, Rajec P, Adamcova R (2010) Cesium on bentonites and montomorillonite K10. J Radioanal Nucl Chem 284(1):55–64

    Article  CAS  Google Scholar 

  4. Galambos M, Rosskopfova O, Kufcakova J, Rajec P (2011) Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. J Radioanal Nucl Chem 288(3):765–777

    Article  CAS  Google Scholar 

  5. Galambos M, Osacky M, Rosskopfova O, Krajnak A, Rajec P (2012) Comprative study of strontium ad on dioctahedral and trioctahedral smectites. J Radioanal Nucl Chem 293(3):889–897

    Article  CAS  Google Scholar 

  6. Kroupova H, Stamberg K (2005) Experimental study and mathematical modeling of Cs(I) and Sr (II) sorption on bentonite as barrier material in deep geological repository. Acta Geodyn Geomater 2(2):79–86

    Google Scholar 

  7. Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66(13):2325–2334

    Article  CAS  Google Scholar 

  8. Galambos M, Suchamek P, Rosskopfova O (2012) Sorption of anthropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem 293(2):613–633

    Article  CAS  Google Scholar 

  9. Bradbury MH, Baeyens B (2005) Experimental measurement and modeling of sorption competition on montmorillonite. Geochim Cosmochim Acta 69(17):4187–4197

    Article  CAS  Google Scholar 

  10. Ali Khan S, Rehman R, Ali Khan M (1995) Sorption of strontium on bentonite. Waste Manag 15(8):641–650

    Article  Google Scholar 

  11. Nilchia A, Atashib, Javidc AH (2007) Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes. Appl Radiat Isot 65(5):482–487

    Article  Google Scholar 

  12. Mell P, Megyeri J, Riess L, Mathe Z (2006) Sorption of Co, Cs, Sr and I onto argillaceous rock as studied by radio tracers. J Radio Anal Nucl Chem 268(2):405–410

    Article  CAS  Google Scholar 

  13. Kutahyah C, Centinkaya B, Bahadir Acar M, Olacy Isik N, Cireli I (2012) Investigation of strontium sorption onto Kula volcanic using central composite design. J Hazard Mater 201:115–124

    Article  Google Scholar 

  14. Wenming D, Xiangke W, Xiaoyan B, Aixia W, Jingzhou D, Zuyi T (2001) Comparative study on sorption/desorption of radio europium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth. Appl Radiat Isot 54:603–610

    Article  CAS  Google Scholar 

  15. Galambos M, Dano M, Rosskopfova O, Sersen F, Kufcakova J, Admcova R, Rajec P (2012) Effect of gamma irradiation on adsorption properties of Slovak bentonites. J Radioanal Nucl Chem 292(2):481–492

    Article  CAS  Google Scholar 

  16. Guo Z, Xu J, Shi K, Tang Y, Wu W, Tao Z (2009) Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies. Colloids Surf A 339(1):126–133

    Article  CAS  Google Scholar 

  17. Bergaya, F, Lagaly G, Vayer M, (2006) Chapter 12.10: cation and anion exchange, handbook of clay science, 1, p 979–1002

  18. Wu J, Li B, Liao J, Feng Y, Zhang D, Zhao J, Wen W, Yang Y, Liu N (2009) Behavior and analysis of Cesium adsorption on montmorillonite mineral. J Environ Radioact 100(10):914–920

    Article  CAS  Google Scholar 

  19. Dai-Chin L, Chun-Nan H, Chi-Lung C (1995) Ion-exchange and sorption kinetics of cesium and strontium in soils. Appl Radiat Isot 46(9):839–846

    Article  Google Scholar 

  20. Cornell RM (1993) Adsorption of cesium on minerals, a review. J Radioanal Nucl Chem 171(2):483–500

    Article  CAS  Google Scholar 

  21. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H (2006) Europium retention onto clay minerals from 25 to 150 ºC: experimental measurements, spectroscopic features and sorption modeling. Geochim Cosmochim Acta 70:4563–4578

    Article  CAS  Google Scholar 

  22. Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Effect pf pH and ionic strength on sorption of Eu(III) to MX-80 bentonite: batch and XAFS study. Radiochim Acta 97:621–630

    Article  CAS  Google Scholar 

  23. Chávez ML, de Pabl L, García TA (2010) Adsorption of Ba2+ by Ca-exchange clinoptilolite tuff and montmorillonite clay. J Hazard Mater 175(1–3):216–223

    Article  Google Scholar 

  24. Zhang P-C, Brady PV, Arthur SE, Zhou W-Q, Sawyer D, Hesterberg DA (2001) Adsorption of barium (II) on montmorillonite: an EXAFS study. Coll Surf A 190(3):239–249

    Article  CAS  Google Scholar 

  25. Rodríguez-Cruz SE, Jockusch RA, Williams ER (1999) Hydration energies and structures of alkaline earth metal ions, M2+(H2O)n, n = 5–7, M = Mg, Ca, Sr, and Ba. J Am Chem Soc 121(38):8898–8906

    Article  Google Scholar 

  26. Smiciklas S, Dimovic S, Plecas I (2007) Removal of Cs+, Sr2+ and Co2+ from aqueous solutions by adsorption of natural clinoptilolite. Appl Clay Sci 35(1–2):139–144

    Article  CAS  Google Scholar 

  27. Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and Migration of heavy metals in Soil. J Environ Stud 10(1):1–10

    CAS  Google Scholar 

  28. Tertre E, Berger G, Castet S, Loubet M, Giffaut E (2005) Experimental sorption of Ni2+, Cs+ and Ln3+ onto montmorillonite up to 150 ºC. Geochim Cosmochim Acta 69(21):4937–4948

    Article  CAS  Google Scholar 

  29. Long H, Wu P, Zhu N (2013) Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chem Eng J 225:237–244

    Article  CAS  Google Scholar 

  30. Ghaemi A, Mostaedi M, Maragheh MG (2011) Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. J Hazard Mater 190(1–3):916–921

    Article  CAS  Google Scholar 

  31. Wang X-S, Huang J, Hu H-Q, Wang J, Qin Y (2007) Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. J Hazard Mater 142(1–2):468–476

    Article  CAS  Google Scholar 

  32. Galambos M, Krajnak A, Rosskopfova O, Viglasova E, Adamcova R, Rajec P (2013) Adsorption equilibrium and kinetic studies of strontium on Mg-bentonite, Fe-bentonite, and illite/semectite. J Radioanal Nucl Chem 298(2):1031–1040

    Article  CAS  Google Scholar 

  33. Bhattacharyya KG, Gupta SS (2008) Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium. Appl Clay Sci 41(1–2):1–9

    Article  CAS  Google Scholar 

  34. Seliman AF (2012) Affinity and removal of radionuclides mixture from low-level liquid waste by synthetic ferrierites. J Radioanal Nucl Chem 292(2):729–738

    Article  CAS  Google Scholar 

  35. Gupta SS, Bhattacharyya KG (2006) Removal of Cd(II) from aqueous solution by kaolinite, montmorillonite and their poly(oxo zirconium) and tetrabutylammonium derivatives. J Hazard Mater 128(2–3):247–257

    Article  Google Scholar 

  36. Zheng H, Liua D, Zhenga Y, Liangb S, Liua Z (2009) Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J Hazard Mater 167(1–3):141–147

    Article  CAS  Google Scholar 

  37. Bascetin E, Atun G (2006) Adsorption behavior of strontium on binary mineral mixtures of montmorillonite and kaolinite. Appl Radiat Isot 64(8):957–964

    Article  CAS  Google Scholar 

  38. Lu N, Mason CFV (2001) Sorption-desorption behavior of strontium-85 onto montmorillonite and silica colloids. Appl Geochem 16(14):1653–1662

    Article  CAS  Google Scholar 

  39. Chiang P, Wang MK, Huang PM, Wang JJ, Chiu CY (2010) Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities. J Environ Radioact 101(6):472–481

    Article  CAS  Google Scholar 

  40. Wenming D, Xiangke W, Xiaoyan B, Aixia W, Jingzhou D, Zuyi T (2001) Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth. J Appl Radiat Isot 54(4):603–610

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Seliman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seliman, A.F., Lasheen, Y.F., Youssief, M.A.E. et al. Removal of some radionuclides from contaminated solution using natural clay: bentonite. J Radioanal Nucl Chem 300, 969–979 (2014). https://doi.org/10.1007/s10967-014-3027-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3027-z

Keywords

Navigation