Skip to main content

Advertisement

Log in

A review on the synthesis of maleic anhydride based polyurethanes from renewable feedstock for different industrial applications

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyurethanes are one of most versatile and large class of polymer because of its wide range of applications. The products of polyurethane are innovative and life-enhancing that play a unique role in making the world more sustainable and can help to solve some of the world’s biggest challenges. Most of the polyurethane products and components are durable and long lasting due to its unique chemical structure. To a large extent, the characteristics of the polyurethane are determined by the chemical nature of the building blocks and modification by the addition of the components in the backbone chain of the polymer. This review summarises the synthesis of polyurethanes using different polyols and pre-polymers from renewable feedstock and modification by maleic anhydride via different synthetic routes for various industrial applications like paints, adhesives, foam, coatings, inks, leathers, toys, automotive, packaging, dispersions, hydrogels, composites, construction etc. The objective of this review is to provide a comprehensive, informative, valuable and critical summary about the current development in the field of maleic anhydride-based polyurethanes.

Graphical Abstract

Generally polyurethane synthesized from Renewable as well as petrochemical sources but Polyurethane from Renewable resources is most explored transformation in polymer chemistry. This review highlights the most recent developments in the role of maleic anhydride in polyurethane synthesis from renewable feedstock/ starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 5
Scheme 5
Fig. 6
Scheme 6
Scheme 7
Fig. 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 8
Scheme 12
Scheme 13
Scheme 14
Fig. 9
Scheme 15
Scheme 16
Fig. 10
Scheme 17
Scheme 18
Scheme 19
Fig. 11
Scheme 20
Fig. 12
Fig. 13
Scheme 21

Similar content being viewed by others

References

  1. Malani RS, Malshe VC, Thorat BN (2022) Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass. J Coat Technol Res 19(1):201–222

    Article  CAS  Google Scholar 

  2. Guo B, Glavas L, Albertsson A-C (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286

    Article  CAS  Google Scholar 

  3. Sharma V, Kundu PP (2006) Addition polymers from natural oils—A review. Prog Polym Sci 31(11):983–1008

    Article  CAS  Google Scholar 

  4. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  5. Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841

    Article  CAS  Google Scholar 

  6. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J Compos Mater 40(17):1511–1575

    Article  CAS  Google Scholar 

  7. Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143

    Article  CAS  Google Scholar 

  8. Sawpan MA (2018) Polyurethanes from vegetable oils and applications: a review. J Polym Res 25(8):184

    Article  Google Scholar 

  9. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH (2018) The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr Build Mater 190:995–1014

    Article  CAS  Google Scholar 

  10. Sambhudevan S, S H, Reghunadhan A (2021) Polyurethane from Sustainable Routes. In: Polyurethane Chemistry: Renewable Polyols and Isocyanates, vol 1380. ACS Symposium Series, vol 1380. American Chemical Society, pp 75–106. ch004

  11. Froidevaux V, Negrell C, Caillol S, Pascault J-P, Boutevin B (2016) Biobased Amines: From Synthesis to Polymers; Present and Future. Chem Rev 116(22):14181–14224

    Article  CAS  PubMed  Google Scholar 

  12. Liang C, Gracida-Alvarez UR, Gallant ET, Gillis PA, Marques YA, Abramo GP, Hawkins TR, Dunn JB (2021) Material Flows of Polyurethane in the United States. Environ Sci Technol 55(20):14215–14224

    Article  CAS  PubMed  Google Scholar 

  13. Banik J, Chakraborty D, Rizwan M, Shaik AH, Chandan MR (2023) Waste Manag Res 0734242X221146082:1–18

  14. https://www.statista.com/statistics/720449/global-polyurethane-market-size-forecast/. Accessed 14 Mar 2023

  15. Buchner GA, Wulfes N, Schomäcker R (2020) Techno-economic assessment of CO2-containing polyurethane rubbers. J CO2 Util 36:153–168

  16. Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. J Chem Soc Rev 36(11):1788–1802

    Article  CAS  Google Scholar 

  17. Raquez JM, Deléglise M, Lacrampe MF, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: A critical review. Prog Polym Sci 35(4):487–509

    Article  CAS  Google Scholar 

  18. Miao S, Wang P, Su Z, Zhang S (2014) Acta Biomater

  19. Ginju M, David SB (2019) Characteristic studies on novel biodegradable polyurethane thin films from soyabean oil. Orient J Chem 35(2):877

    Article  CAS  Google Scholar 

  20. Das S, Pandey P, Mohanty S, Nayak SK (2017) Insight on castor oil based polyurethane and nanocomposites: recent trends and development. Polym-Plast Technol Eng 56(14):1556–1585

    Article  CAS  Google Scholar 

  21. Gaddam SK, Kutcherlapati SNR, Palanisamy A (2017) Self-cross-linkable anionic waterborne polyurethane-silanol dispersions from cottonseed-oil-based phosphorylated polyol as ionic soft segment. ACS Sustain Chem Eng 5(8):6447–6455

    Article  CAS  Google Scholar 

  22. Hayes DG, Dumont M-J (2016) In: McKeon TA, Hayes DG, Hildebrand DF, Weselake RJ (eds) Industrial Oil Crops, chap-3, AOCS Press

  23. Man L, Feng Y, Hu Y, Yuan T, Yang Z (2019) A renewable and multifunctional eco-friendly coating from novel tung oil-based cationic waterborne polyurethane dispersions. J Clean Prod 241:118341

    Article  CAS  Google Scholar 

  24. Salleh WNFW, Tahir SM, Mohamed NS (2018) Synthesis of waste cooking oil-based polyurethane for solid polymer electrolyte. Polym Bull 75(1):109–120

    Article  CAS  Google Scholar 

  25. Si H, Liu H, Shang S, Song J, Liao S, Wang D, Song Z (2016) Preparation and properties of maleopimaric acid-based polyester polyol dispersion for two-component waterborne polyurethane coating. Prog Org Coat 90:309–316

    Article  CAS  Google Scholar 

  26. Xu X, Shang S, Song Z, Cui S, Wang H, Wang D (2011) Preparation and characterization of rosin-based waterborne polyurethane from maleopimaric acid polyester polyol. Bioresources 6(3):2460–2470

    CAS  Google Scholar 

  27. Hsieh C-C, Chen Y-C (2020) Synthesis of bio-based polyurethane foam modified with rosin using an environmentally-friendly process. J Clean Prod 276:124203

    Article  CAS  Google Scholar 

  28. Spaans CJ, Belgraver VW, Rienstra O, de Groot JH, Veth RPH, Pennings AJ (2000) Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials 21(23):2453–2460

    Article  CAS  PubMed  Google Scholar 

  29. Zhang T, Yang J, Zhang N, Huang T, Wang Y (2017) Achieving large dielectric property improvement in poly(ethylene vinyl acetate)/thermoplastic polyurethane/multiwall carbon nanotube nanocomposites by tailoring phase morphology. Ind Eng Chem Res 56(13):3607–3617

    Article  CAS  Google Scholar 

  30. Ugarte L, Gómez-Fernández S, Peña-Rodrı́uez C, Prociak A, Corcuera MA, Eceiza A (2015) Tailoring mechanical properties of rigid polyurethane foams by sorbitol and corn derived biopolyol mixtures. ACS Sustain Chem Eng 3(12):3382–3387. https://doi.org/10.1021/acssuschemeng.5b01094

    Article  CAS  Google Scholar 

  31. Członka S, Strąkowska A, Pospiech P, Strzelec K (2020) Effects of chemically treated eucalyptus fibers on mechanical, thermal and insulating properties of polyurethane composite foams. Materials 13(7):1781

  32. Wang Z, Li W, Yang X, Cao J, Tu Y, Wu R, Wang W (2018) Highly stretchable and compressible shape memory hydrogels based on polyurethane network and supramolecular interaction. Mater Today Commun 17:246–251

    Article  Google Scholar 

  33. Lin Z, Sun Z, Xu C, Zhang A, Xiang J, Fan HJRa (2021) A self-matting waterborne polyurethane coating with admirable abrasion-resistance. RSC Adv 11(44):27620–27626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghasemlou M, Daver F, Ivanova EP, Adhikari B (2019) Polyurethanes from seed oil-based polyols: A review of synthesis, mechanical and thermal properties. Ind Crops Prod 142:111841

    Article  CAS  Google Scholar 

  35. Tian H, Wang Y, Zhang L, Quan C, Zhang X (2010) Improved flexibility and water resistance of soy protein thermoplastics containing waterborne polyurethane. Ind Crops Prod 32(1):13–20

    Article  CAS  Google Scholar 

  36. Septevani AA, Evans DAC, Martin DJ, Annamalai PK (2018) Hybrid polyether-palm oil polyester polyol based rigid polyurethane foam reinforced with cellulose nanocrystal. Ind Crops Prod 112:378–388

    Article  CAS  Google Scholar 

  37. Singh I, Samal SK, Mohanty S, Nayak SK (2020) Recent advancement in plant oil derived polyol-based polyurethane foam for future perspective: a review. Eur J Lipid Sci Technol 122(3):1900225

    Article  CAS  Google Scholar 

  38. Kanyanta V, Ivankovic A (2010) Mechanical characterisation of polyurethane elastomer for biomedical applications. J Mech Behav Biomed Mater 3(1):51–62

    Article  PubMed  Google Scholar 

  39. Hirai T, Sadatoh H, Ueda T, Kasazaki T, Kurita Y, Hirai M, Hayashi S (1996) Polyurethane‐elastomer‐actuator. Makromol Chem Appl Macromol Chem Phys 240 (1):221–229

  40. Paroli RM, Cole KC, Delgado AH (1995) Evaluating the Weatherability of Polyurethane Sealants. In: Multidimensional Spectroscopy of Polymers, vol 598. ACS Symposium Series, vol 598. American Chemical Society, pp 117–136. ch007

  41. Chew MYL (2004) Retention of movement capability of polyurethane sealants in the tropics. Constr Build Mater 18(6):455–459

    Article  Google Scholar 

  42. Chew MY (2004) Retention of movement capability of polyurethane sealants in the tropics. Construction and Building Materials 18 (6):455-459

  43. Segura DM, Nurse AD, McCourt A, Phelps R, Segura A (2005) Chapter 3 Chemistry of polyurethane adhesives and sealants. In: Cognard P (ed) Handbook of Adhesives and Sealants, vol 1. Elsevier Science Ltd, pp 101–162

  44. Kowalczyk K, Łuczka K, Grzmil B, Spychaj T (2012) Anticorrosive polyurethane paints with nano- and microsized phosphates. Prog Org Coat 74(1):151–157

    Article  CAS  Google Scholar 

  45. Figovsky OL, Shapovalov LD Features of reaction amino‐cyclocarbonate for production of new type nonisocyanate polyurethane coatings. In: Macromolecular Symposia, 2002. vol 1. Wiley Online Library, pp 325–332

  46. Choi M, Kim Y, Park S, Ka D, Kim T, Lee S, Sohn EH, Jin Y, Hong J (2021) Functionalized polyurethane-coated fabric with high breathability, durability, reusability, and protection ability. Adv Func Mater 31(24):2101511

    Article  CAS  Google Scholar 

  47. Zhang Y, Maxted J, Barber A, Lowe C, Smith R (2013) The durability of clear polyurethane coil coatings studied by FTIR peak fitting. Polym Degrad Stab 98(2):527–534

    Article  CAS  Google Scholar 

  48. Chaudhari A, Kulkarni R, Mahulikar P, Sohn D, Gite V (2015) Development of PU coatings from neem oil based alkyds prepared by the monoglyceride route. J Am Oil Chem Soc 92(5):733–741

    Article  CAS  Google Scholar 

  49. Khatoon H, Iqbal S, Irfan M, Darda A, Rawat NK (2021) A review on the production, properties and applications of non-isocyanate polyurethane: A greener perspective. Prog Org Coat 154:106124

    Article  CAS  Google Scholar 

  50. Gama NV, Ferreira A, Barros-Timmons A (2018) Polyurethane foams: Past, present, and future. Materials 11 (10):1841

  51. Liu Y, Deng K, Wang S, Xiao M, Han D, Meng Y (2015) A novel biodegradable polymeric surfactant synthesized from carbon dioxide, maleic anhydride and propylene epoxide. Polym Chem 6(11):2076–2083

    Article  CAS  Google Scholar 

  52. Musa OM (2016) Handbook of maleic anhydride based materials. Springer 10:978–973

    Google Scholar 

  53. Lorences MJ, Patience GS, Díez FV, Coca J (2003) Butane Oxidation to Maleic Anhydride: Kinetic Modeling and Byproducts. Ind Eng Chem Res 42(26):6730–6742

    Article  CAS  Google Scholar 

  54. Du Z, Ma J, Wang F, Liu J, Xu J (2011) Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chem 13(3):554–557

    Article  CAS  Google Scholar 

  55. Cheng M-J, Goddard WA III (2013) The Critical Role of Phosphate in Vanadium Phosphate Oxide for the Catalytic Activation and Functionalization of n-Butane to Maleic Anhydride. J Am Chem Soc 135(12):4600–4603

    Article  CAS  PubMed  Google Scholar 

  56. Lan J, Lin J, Chen Z, Yin G (2015) Transformation of 5-Hydroxymethylfurfural (HMF) to Maleic Anhydride by Aerobic Oxidation with Heteropolyacid Catalysts. ACS Catal 5(4):2035–2041

    Article  CAS  Google Scholar 

  57. Alonso-Fagúndez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with VOx/Al2O3 catalysts. Chemsuschem 5(10):1984–1990

    Article  PubMed  Google Scholar 

  58. Bapat AP, Ray JG, Savin DA, Sumerlin BS (2013) Redox-Responsive Dynamic-Covalent Assemblies: Stars and Miktoarm Stars. Macromolecules 46(6):2188–2198

    Article  CAS  Google Scholar 

  59. Wei W, Wang T, Yi C, Liu J, Liu X (2015) Self-assembled micelles based on branched poly (styrene-alt-maleic anhydride) as particulate emulsifiers. RSC Adv 5(2):1564–1570

    Article  CAS  Google Scholar 

  60. Yao Z, Zhang JS, Chen ML, Li BJ, Lu YY, Cao K (2011) Preparation of well-defined block copolymer having one polystyrene segment and another poly (styrene-alt-maleic anhydride) segment with RAFT polymerization. J Appl Polym Sci 121(3):1740–1746

    Article  CAS  Google Scholar 

  61. Mohebby B, Kevily H, Kazemi-Najafi S (2014) Oleothermal modification of fir wood with a combination of soybean oil and maleic anhydride and its effects on physico-mechanical properties of treated wood. Wood Sci Technol 48(4):797–809

    Article  CAS  Google Scholar 

  62. Echeverri DA, Perez WA, Rios LA (2013) Maleinization of Soybean Oil Glycerides Obtained from Biodiesel-Derived Crude Glycerol. J Am Oil Chem Soc 90(12):1877–1882

    Article  CAS  Google Scholar 

  63. Hong J (2014) Lightweight Materials Prepared from Vegetable Oils and Their Derivatives. In: Lightweight Materials from Biopolymers and Biofibers, vol 1175. ACS Symposium Series, vol 1175. American Chemical Society, pp 53–67. ch004

  64. Wu F, Musa OM (2016) Vegetable Oil–Maleic Anhydride and Maleimide Derivatives: Syntheses and Properties. Handbook of Maleic Anhydride Based Materials: Syntheses, roperties Applications:151–208

  65. Maia DL, Fernandes FA (2018) Production of castor oil maleate using di-tert-butyl peroxide as free radical catalyst. Braz J Chem Eng 35:699–708

    Article  CAS  Google Scholar 

  66. Xia Y, Quirino RL, Larock RC (2013) Bio-based thermosetting polymers from vegetable oils. J Renew Mater 1(1):3–27

    Article  CAS  Google Scholar 

  67. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10(4):1692–1704

    Article  CAS  PubMed  Google Scholar 

  68. Soto M, Sebastián RM, Marquet J (2014) Photochemical Activation of Extremely Weak Nucleophiles: Highly Fluorinated Urethanes and Polyurethanes from Polyfluoro Alcohols. J Org Chem 79(11):5019–5027

    Article  CAS  PubMed  Google Scholar 

  69. Charlon M, Heinrich B, Matter Y, Couzigné E, Donnio B, Avérous L (2014) Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols. Eur Polymer J 61:197–205

    Article  CAS  Google Scholar 

  70. Campanella A, Bonnaillie L, Wool R (2009) Polyurethane foams from soyoil-based polyols. J Appl Polym Sci 112(4):2567–2578

    Article  CAS  Google Scholar 

  71. Ji Y, Chen S, Cheng Y (2019) Synthesis and acoustic study of a new tung oil-based polyurethane composite foam with the addition of miscanthus lutarioriparius. J Polym 11(7):1144

    Google Scholar 

  72. Feng Y, Man L, Hu Y, Chen L, Xie B, Zhang C, Yuan T, Yang Z (2019) One-pot synthesis of polyurethane-imides with tailored performance from castor and tung oil. Prog Org Coat 132:62–69

    Article  CAS  Google Scholar 

  73. Huang Y, Pang L, Wang H, Zhong R, Zeng Z, Yang J (2013) Synthesis and properties of UV-curable tung oil based resins via modification of Diels-Alder reaction, nonisocyanate polyurethane and acrylates. Prog Org Coat 76(4):654–661

    Article  CAS  Google Scholar 

  74. https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.jinhetec.com%2Ftung-oil%2F58595631.html&psig=AOvVaw22b8r4og15aKE9GxamCr1L&ust=1678983503392000&source=images&cd=vfe&ved=0CAMQjB1qFwoTCIj4xqer3v0CFQAAAAAdAAAAABAG. Accessed 14 Mar 2023

  75. Yuan C, Zhao X, Shao L, Tang K (2014) Preparation and properties of Tung oil-based polyurethane. Transactions of Tianjin University 20(4):273–281. https://doi.org/10.1007/s12209-014-2208-8

    Article  CAS  Google Scholar 

  76. Shirke AG, Dholakiya BZ, Kuperkar K (2018) Modification of tung oil–based polyurethane foam by anhydrides and inorganic content through esterification process. J Appl Polym Sci 135(5):45786

    Article  Google Scholar 

  77. Guan J, Song Y, Lin Y, Yin X, Zuo M, Zhao Y, Tao X, Zheng Q (2011) Progress in Study of Non-Isocyanate Polyurethane. Ind Eng Chem Res 50(11):6517–6527

    Article  CAS  Google Scholar 

  78. Lubguban AA, Ruda RJG, Aquiatan RH, Paclijan S, Magadan KO, Balangao JKB, Escalera ST, Bayron RR, Debalucos B, Lubguban AA (2017) Soy-based polyols and polyurethanes. J. Kimika 28(1):1–19

    Article  Google Scholar 

  79. Hussain N, Bonnia N, Ismail SS, Ramli R, Surip S Physical properties of a soy-based polyol as polyurethane coatings. In: AIP Conference Proceedings, 2018. vol 1. AIP Publishing LLC, p 020058

  80. Tu Y-C (2008) Polyurethane foams from novel soy-based polyols. University of Missouri--Columbia

  81. https://oil-mill-plant.com/cooking-oil-processing-line/soybean-oil-production-line.html. Accessed 14 Mar 2023

  82. Li Y, Yang L, Zhang H Synthesis and characterization of a novel bio-based resin from maleated soybean oil polyols. In: IOP Conference Series: Materials Science and Engineering, 2017. vol 1. IOP Publishing, p 012001

  83. Sharma V, Kundu PP (2008) Condensation polymers from natural oils. Prog Polym Sci 33(12):1199–1215

    Article  CAS  Google Scholar 

  84. Osorio-González CS, Gómez-Falcon N, Sandoval-Salas F, Saini R, Brar SK, Ramírez AA (2020) Production of biodiesel from castor oil: A review. Energies 13(10):2467

    Article  Google Scholar 

  85. Ogunniyi DS (2006) Castor oil: A vital industrial raw material. Biores Technol 97(9):1086–1091

    Article  CAS  Google Scholar 

  86. Panda SS, Panda BP, Nayak SK, Mohanty S (2018) A Review on Waterborne Thermosetting Polyurethane Coatings Based on Castor Oil: Synthesis, Characterization, and Application. Polym-Plast Technol Eng 57(6):500–522. https://doi.org/10.1080/03602559.2016.1275681

    Article  CAS  Google Scholar 

  87. Dai Z, Jiang P, Zhang P, Wai PT, Bao Y, Gao X, Xia J, Haryono A (2021) Multiwalled carbon nanotubes/castor-oil–based waterborne polyurethane nanocomposite prepared using a solvent-free method. Polym Adv Technol 32(3):1038–1048

    Article  CAS  Google Scholar 

  88. Bhosale N, Shaik A, Mandal SK (2015) Synthesis and characterization of castor oil based hybrid polymers and their polyurethane–urea/silica coatings. RSC Adv 5(125):103625–103635

    Article  CAS  Google Scholar 

  89. Abo-Elenien OM, Elsaeed AM, El-Sockary MA (2014) Synthesis of new polyurethane coating based on rosin for corrosion protection of petroleum industries equipment. J Eng Res Appl 4(1):148–155

    Google Scholar 

  90. Liu G, Wu G, Chen J, Kong Z (2016) Synthesis, modification and properties of rosin-based non-isocyanate polyurethanes coatings. Prog Org Coat 101:461–467

    Article  CAS  Google Scholar 

  91. Soliman AA, Elsawy MM, Alian NA, Shaker NO (2021) Characterization, coating and biological evaluation of polyol esters rosin derivatives as coating films. J Coat Technol Res 18(2):373–381

    Article  CAS  Google Scholar 

  92. https://www.pinterest.com/pin/602778731364227097/. Accessed 14 Mar 2023

  93. Wu G, Chen J, Yang Z, Jin C, Liu G, Huo S, Kong Z (2022) Preparation and Properties of Autocatalytic Biobased Waterborne Polyol from Rosin Based Epoxy Resin. J Polym Environ 30(8):3340–3350

    Article  CAS  Google Scholar 

  94. Boga K, Gaddam SK, Chepuri RR, Palanisamy A (2019) Development of biobased polyurethane-imides from maleinized cottonseed oil and castor oil. Polym Adv Technol 30(11):2742–2749

    Article  CAS  Google Scholar 

  95. Narute P, Rao GR, Misra S, Palanisamy A (2015) Modification of cottonseed oil for amine cured epoxy resin: Studies on thermo-mechanical, physico-chemical, morphological and antimicrobial properties. Prog Org Coat 88:316–324

    Article  CAS  Google Scholar 

  96. Gaikwad MS, Gite VV, Mahulikar PP, Hundiwale DG, Yemul OS (2015) Eco-friendly polyurethane coatings from cottonseed and karanja oil. Prog Org Coat 86:164–172

    Article  CAS  Google Scholar 

  97. Agarwal D, Singh P, Chakrabarty M, Shaikh A, Gayal SJtt, (2003) Cottonseed Oil Quality, Utilization and Processing. CICR Technical. Bulletin 25:5

    Google Scholar 

  98. Gaddam SK, Palanisamy A (2016) Anionic waterborne polyurethane dispersions from maleated cotton seed oil polyol carrying ionisable groups. Colloid Polym Sci 294(2):347–355

    Article  CAS  Google Scholar 

  99. http://www.oilmillmachinery.net/cottonseed-oil-processing.html. Accessed 14 Mar 2023

  100. Dang Y, Luo X, Wang F, Li Y (2016) Value-added conversion of waste cooking oil and post-consumer PET bottles into biodiesel and polyurethane foams. Waste Manage 52:360–366

    Article  CAS  Google Scholar 

  101. Polaczek K, Kurańska M, Prociak A (2022) Open-cell bio-polyurethane foams based on bio-polyols from used cooking oil. J Clean Prod 359:132107

    Article  CAS  Google Scholar 

  102. Kirpluks M, Cabulis U, Ivdre A, Kuranska M, Zieleniewska M, Auguscik M (2016) Mechanical and thermal properties of high-density rigid polyurethane foams from renewable resources. J Renew Mater 4(1):86–100

    Article  CAS  Google Scholar 

  103. Kurańska M, Polaczek K, Auguścik-Królikowska M, Prociak A, Ryszkowska J (2020) Open-cell rigid polyurethane bio-foams based on modified used cooking oil. Polymer 190:122164

    Article  Google Scholar 

  104. Koh E, Lee S, Shin J, Kim Y-W (2013) Renewable Polyurethane Microcapsules with Isosorbide Derivatives for Self-Healing Anticorrosion Coatings. Ind Eng Chem Res 52(44):15541–15548

    Article  CAS  Google Scholar 

  105. Xia X-X, Zhong J-J, Qian Z-G (2014) Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol Bioeng 111(12):2580–2586

    Article  PubMed  Google Scholar 

  106. Wu M, Di J, Gong L, He Y-C, Ma C, Deng Y (2023) Enhanced adipic acid production from sugarcane bagasse by a rapid room temperature pretreatment. Chem Eng J 452:139320

    Article  CAS  Google Scholar 

  107. Skoog E, Shin JH, Saez-Jimenez V, Mapelli V, Olsson L (2018) Biobased adipic acid – The challenge of developing the production host. Biotechnol Adv 36(8):2248–2263

    Article  CAS  PubMed  Google Scholar 

  108. Alonso S, Rendueles M, Díaz M (2015) Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 35(4):497–513. https://doi.org/10.3109/07388551.2014.904269

    Article  CAS  PubMed  Google Scholar 

  109. Mishra VK, Patel KI (2015) Nonionic Diol Modified UV-Curable Polyurethane Dispersions: Preparation and Characterization. J Dispersion Sci Technol 36(3):351–362. https://doi.org/10.1080/01932691.2014.903805

    Article  CAS  Google Scholar 

  110. Yusuff AS, Adeniyi OD, Olutoye MA, Akpan UG (2018) Development and characterization of a composite anthill chicken eggshell catalyst for biodiesel production from waste frying oil. Int J Technol 1:1–11

  111. Lopes D, Ferreira MJ, Russo R, Dias JM (2015) Natural and synthetic rubber/waste – Ethylene-Vinyl Acetate composites for sustainable application in the footwear industry. J Clean Prod 92:230–236

    Article  CAS  Google Scholar 

  112. Ma J, Shao L, Xue C, Deng F, Duan Z (2014) Compatibilization and properties of ethylene vinyl acetate copolymer (EVA) and thermoplastic polyurethane (TPU) blend based foam. Polym Bull 71(9):2219–2234

    Article  CAS  Google Scholar 

  113. https://fkur.com/en/bioplastics/im-green-eva/. Accessed 14 Mar 2023

  114. Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 45(31):5161–5163

    Article  CAS  Google Scholar 

  115. Anand A, Kulkarni RD, Gite VV (2012) Preparation and properties of eco-friendly two pack PU coatings based on renewable source (sorbitol) and its property improvement by nano ZnO. Prog Org Coat 74(4):764–767

    Article  CAS  Google Scholar 

  116. Han JW, Lee H (2012) Direct conversion of cellulose into sorbitol using dual-functionalized catalysts in neutral aqueous solution. Catal Commun 19:115–118

    Article  CAS  Google Scholar 

  117. Marques C, Tarek R, Sara M, Brar SK (2016) Chapter 12 - Sorbitol Production From Biomass and Its Global Market. In: Kaur Brar S, Jyoti Sarma S, Pakshirajan K (eds) Platform Chemical Biorefinery. Elsevier, Amsterdam, pp 217–227

    Chapter  Google Scholar 

  118. Błażek K, Datta J (2019) Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit Rev Environ Sci Technol 49(3):173–211

    Article  Google Scholar 

  119. Rand L, Thir B, Reegen S, Frisch K (1965) Kinetics of alcohol–isocyanate reactions with metal catalysts. J Appl Polym Sci 9(5):1787–1795

    Article  CAS  Google Scholar 

  120. Dyer E, Taylor HA, Mason SJ, Samson J (1949) The rates of reaction of isocyanates with alcohols. I. Phenyl isocyanate with 1-and 2-butanol. J Am Chem Soc 71(12):4106–4109

    Article  CAS  Google Scholar 

  121. Xiang J, Yang S, Zhang J, Wu J, Shao Y, Wang Z, Yang M (2022) The preparation of sorbitol and its application in polyurethane: a review. Polym Bull 79(4):2667–2684

    Article  CAS  Google Scholar 

  122. Clark JH, Farmer TJ, Ingram ID, Lie Y (2018) North M (2018) Renewable Self-Blowing Non-Isocyanate Polyurethane Foams from Lysine and Sorbitol. Eur J Org Chem 31:4265–4271

    Article  Google Scholar 

  123. Wu Z, Dai J, Tang L, Qu J (2019) Sorbitol-based aqueous cyclic carbonate dispersion for waterborne nonisocyanate polyurethane coatings via an environment-friendly route. J Coat Technol Res 16(3):721–732

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. S. thanks SVNIT Surat for the laboratory facility and UGC for fellowship. B. D. and T. N. thanks to the Director, SVNIT, Surat for providing research facility. T. N. thanks to the Director, SVNIT, Surat for providing SEED GRANT for the research. T. N. gratefully acknowledges the financial support from the CSIR-HRDG, India, Project File No. 02(0449)/21/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharatkumar Z. Dholakiya.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savani, N.G., Naveen, T. & Dholakiya, B.Z. A review on the synthesis of maleic anhydride based polyurethanes from renewable feedstock for different industrial applications. J Polym Res 30, 175 (2023). https://doi.org/10.1007/s10965-023-03543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03543-7

Keywords

Navigation