Skip to main content
Log in

Chitosan embedded with Ag/Au nanoparticles: investigation of their structural, optical and sensing properties

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Quantitative detection of hydrogen peroxide (H2O2) is reported by utilizing an optical sensor based on the Surface Plasmon Resonances (SPR) of Ag and Au nanoparticles embedded in chitosan, a biopolymer. Ag and Au nanoparticles, fabricated by chemical reduction approach, were incorporated individually in chitosan matrix by solution casting method. Subsequently, their presence in the host matrix was confirmed using UV-visible spectroscopy, X-Ray diffractometer (XRD), High Resolution Transmission Electron Microscopy (HRTEM) and Field Emission Scanning Electron Microscopy (FESEM) along with Energy Dispersive Analysis of X-Ray (EDAX) spectroscopy. Structural changes induced in chitosan with addition of varying concentration of Ag or Au nanoparticles were studied using Fourier transform infrared (FTIR) spectroscopy. Optical energy gap of chitosan decreased from 3.82 ± 0.28 eV to 1.84 ± 0.19 eV for Ag-chitosan nanocomposite (Nc) film containing 0.50 wt% Ag nanoparticle while to a value of 2.14 ± 0.08 eV for Au-chitosan Nc film containing 0.5 wt% of Au nanoparticle. A significant difference in position and intensity of SPR absorption band was observed as a function of variable concentration of H2O2. The detection limit of these optical sensors is upto 0.3 μM concentration of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdallah OM, EL-Baghdady KZ, Khalil MMH, El Borhamy MI, Meligi GA (2020) Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites. J Polym Res 27:74

    Article  CAS  Google Scholar 

  2. Nithya A, Mohan SC, Jeganathan K, Jothivenkatachalam K (2017). Int J Biol Macromol 104:1774

    Article  Google Scholar 

  3. Rubilar JF, Cruz RMS, Silva HD, Vicente AA, Khmelinskii I, Vieira MC (2013) Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J Food Eng 115:466–474

    Article  CAS  Google Scholar 

  4. Ahmed J, Mulla M, Arfat YA, Thai TLA (2017) Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll 71:141–148

    Article  CAS  Google Scholar 

  5. Palem RR, Ganesh SD, Saha N, Kronek J, Sáha P (2018) ‘Green’ synthesis of silver polymer Nanocomposites of poly (2-isopropenyl-2- oxazoline-co- N-vinylpyrrolidone) and its catalytic activity. J Polym Res 25:152

    Article  Google Scholar 

  6. Mironenko AY, Sergeev AA, Nazirov AE, Modin EB, Voznesenskiy SS, Bratskaya SY (2016). Sensors Actuators B Chem 225:348

    Article  CAS  Google Scholar 

  7. Dzhardimalieva PI, Uflyand IE (2018) Preparation of metal-polymer nanocomposites by chemical reduction of metal ions: functions of polymer matrices. J Polym Res 25:255

    Article  Google Scholar 

  8. Kreibeg U, Vollmer M (1995) Optical properties of metal clusters, “in: springer series in material science, 25

  9. Saini I, Rozra J, Chandak N, Aggarwal S, Sharma PK, Sharma A (2013). Mater Chem Phys 139:802

    Article  CAS  Google Scholar 

  10. Meena, Sharma A (2018). Mater Res Exp 5:045041

  11. Tagad CK, Dugasani SR, Aiyer R, Park S, Kulkarni A, Sabharwal S (2013). Sensors Actuators B Chem 183:144

    Article  CAS  Google Scholar 

  12. Abdelghany AM, Abdelrazek EM, Badr SI, Morsi MA (2016) Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: Materials for electrochemical and optical applications. Mater Des 97:532–543

    Article  CAS  Google Scholar 

  13. Macleod HA (2001) Thin-film optical filters. Imperial College, London

    Book  Google Scholar 

  14. Park J, Park N, Varlamov S (2014) Optimum surface condition for plasmonic Ag nanoparticles in polycrystalline silicon thin film solar cells. Appl Phys Lett 104:033903

    Article  Google Scholar 

  15. Paulkumar K, Gnanajobitha G, Vanaja M, Pavunraj M, Annadurai G (2017). Adv Nat Sci Nanosci Nanotechnol 8:035019

    Article  Google Scholar 

  16. Tyliszczak B, Drabczyk A, Kramarczyk SK, Bialik-Wąs K, Kupiec AS (2017) In vitro cytotoxicity of hydrogels based on chitosan and modified with gold nanoparticles. J Polym Res 24:153

    Article  Google Scholar 

  17. Mathew TV, Kuriakose S (2013) 4-(1-Pyrenyl)butyric acid-functionalised chitosan as a matrix for AgNP: photoresponsive and thermal properties. J Polym Res 20:291

    Article  Google Scholar 

  18. Gabriel JS, Gonzaga VAM, Poli AL, Schmitt CC (2017). Carbohydr Polym 171:202

    Article  CAS  Google Scholar 

  19. Manno D, Filippo E, Di Giulio M, Serra A (2008) Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J Non-Cryst Solids 354:5515–5520

    Article  CAS  Google Scholar 

  20. Filippo E, Serra A, Manno D (2009). Sensors Actuators B Chem 138:625

    Article  CAS  Google Scholar 

  21. Ning L, Guan X, Ma J, Wang M, Fan X, Zhang G, Zhang F, Peng W, Li Y (2018) A highly sensitive nonenzymatic H2O2 sensor based on platinum, ZnFe2O4 functionalized reduced graphene oxide. J Alloys Compd 738:317–322

    Article  CAS  Google Scholar 

  22. Zhang W, Xie G, Li S, Lu L, Liu B (2012) Au/CeO2–chitosan composite film for hydrogen peroxide sensing. Appl Surf Sci 258:8222–8227

    Article  CAS  Google Scholar 

  23. Noghabi MP, Parizadeh MR, Mobarhan MG, Taherzadeh D, Hosseini HA, Darroud M (2017) Green synthesis of silver nanoparticles and investigation of their colorimetric sensing and cytotoxicity effects. J Mol Struct 1146:499–503

    Article  Google Scholar 

  24. Mohan S, Oluwafemi OS, Songca SP, Jayachandran VP, Rouxel D, Joubert O, Kalarikkal N, Thomas S (2016) Synthesis, antibacterial, cytotoxicity and sensing properties of starch-capped silver nanoparticles. J Mol Liq 213:75–81

    Article  CAS  Google Scholar 

  25. Cheviron P, Gouanvé F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298

    Article  CAS  Google Scholar 

  26. Meena, Sharma A (2017). Integr Ferroelectr 184:158–165

  27. Carlo GD, Curulli A, Toro RG, Bianchini C, Caro TD, Padeletti G, Zane D, Ingo GM (2012) Green Synthesis of Gold–Chitosan Nanocomposites for Caffeic Acid Sensing. Langmuir 28:5471–5479

    Article  Google Scholar 

  28. Govindan S, Nivetha EAK, Saravanan R, Narayanan V, Stephen A (2012) Synthesis and characterization of chitosan–silver nanocomposite. Appl Nanosci 2:299–303

    Article  CAS  Google Scholar 

  29. JCPDS-ICDD (Joint Committee on Powder Diffraction Standard-International Centre for Diffraction Data (2003). Silver file no. 67–0720

  30. Kittel C (2005) Introduction to solid state physics. Wiley, USA

    Google Scholar 

  31. Cullity BD (1978) Elements of X-ray diffraction, Addison Wesley Pub.Co.

  32. Youssef AM, Yousef HA, El-Sayed SM, Kamel S (2015) Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int J Biol Macromol 76:25–32

    Article  CAS  Google Scholar 

  33. Archana D, Singh BK, Dutta J, Dutta PK (2015) Chitosan-PVP-nano silver oxide wound dressing: In vitro and in vivo evaluation. Int J Biol Macromol 73:49–57

    Article  CAS  Google Scholar 

  34. Metzler M, Chylińska M, Kaczmarek H (2015) Preparation and characteristics of nanosilver composite based on chitosan-graft-acrylic acid copolymer. J Polym Res 22:146

    Article  Google Scholar 

  35. Caldera-Villalobos M, Serrano JG, Cid AAP, Herrera-Gonzalez AM (2017) Polyelectrolytes with sulfonate groups obtained by chemical modification of chitosan useful in green synthesis of Au and Ag nanoparticles. J Appl Polym Sci 134:45240

    Article  Google Scholar 

  36. Venkateshan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525

    Article  Google Scholar 

  37. Kizil R, Irudayaraj J, Seetharaman K (2002) Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. J Agric Food Chem 50:3912–3918

    Article  CAS  Google Scholar 

  38. Futyra AR, Liskiewicz MK, Sebastian V, Irusta S, Arruebo M, Kyzioła A, Stochel G (2017) Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Adv 7:52398–52413

    Article  Google Scholar 

  39. Hussain ST, Iqbal M, Mazhar M (2009) Size control synthesis of starch capped-gold nanoparticles. J Nanopart Res 11:1383–1391

    Article  Google Scholar 

  40. Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, Cupido CN, Hussein AA (2020). Biomolecules 10:452

    Article  CAS  Google Scholar 

  41. Seo DK, Homann R (1999) Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials. Theor Chem Accounts 102:23–32

    Article  CAS  Google Scholar 

  42. Hassanien AS, AKL AA (2016) Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattice Microst 89:153–169

    Article  CAS  Google Scholar 

  43. Davis E, Mott NF (1970) Electronic processes in non-crystalline materials. Oxford University Press Inc., USA

    Google Scholar 

  44. Sonal, Sharma A, Aggarwal S (2018). Opt Mater 84:807

Download references

Acknowledgements

One of the authors (Meena) wishes to express her deep gratitude towards UGC for financial support in the form of BSR fellowship to carry out the research work. Authors are grateful to AIIMS Delhi for providing HRTEM facility and IIT Roorkee for FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annu Sharma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Stable Ag-chitosan and Au-chitosan Nc films were fabricated.

• Optical energy gap reduces to 1.84 ± 0.19 eV and 2.14 ± 0.08 eV for Ag-chitosan Nc film and Au-chitosan Nc film respectively as compared to 3.82 ± 0.28 eV for chitosan.

• FTIR analysis confirms the strong interaction of Ag and Au nanoparticles with chitosan.

• The detection limit of these optical sensors is upto 0.3 μM concentration of H2O2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, Sharma, A., Kumar, R. et al. Chitosan embedded with Ag/Au nanoparticles: investigation of their structural, optical and sensing properties. J Polym Res 27, 253 (2020). https://doi.org/10.1007/s10965-020-02233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02233-y

Keywords

Navigation