Skip to main content
Log in

A Comparative Study of PEGylated Cobalt Oxide Nanoparticles (Co3O4-NPs) and Cobalt Sulfide Nanoparticles (Co9S8-NPs) for Biological and Photocatalytic Applications

  • Research
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Cobalt oxide nanoparticles (Co3O4-NPs) and cobalt sulfide nanoparticles (Co9S8-NPs) have shown extensive potential in electrochemical sensing, catalysis, specific drug targeting, and resonance imaging. However, Co9S8-NPs have been rarely explored for biomedical applications as compared to their oxide counterparts. Thus, in the current study, biocompatible PEGylated Co9S8-NPs and Co3O4-NPs are explored and compared for biological and photocatalytic properties. PEGylation of both the NPs is achieved using a simple chemical co-precipitation method followed by characterization using UV visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and pH-responsive dispersion study. After thorough characterization, the NPs are evaluated and compared for various biological applications including antibacterial, antifungal, antileishmanial, antioxidant, and biocompatibility as well as photo-catalytic dye degradation studies. Both the NPs have shown excellent biological applications; however, Co9S8-NPs exhibit comparatively better antibacterial, antifungal, and antioxidant properties except antileishmanial potential where Co3O4-NPs show slight superiority. Furthermore, Co3O4-NPs indicate a higher degradation potential of methylene blue (MB) up to 46.93%. In comparison, Co9S8-NPs have a degradation ability of up to 42%, at 20 mg/ml within 3 h, which indicates considerable remediation potential of the NPs. Interestingly, both the NPs exhibit non-hemolytic behavior, thus demonstrating a compatible and bio-safe nature of both the NPs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Khalil, A. T., Ovais, M., Ullah, I., et al. (2020). Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arabian Journal of Chemistry, 13, 916–931. https://doi.org/10.1016/J.ARABJC.2017.08.009

    Article  CAS  Google Scholar 

  2. Akram, R., Khan, M. D., Zequine, C., et al. (2020). Cobalt sulfide nanoparticles: Synthesis, water splitting and supercapacitance studies. Materials Science in Semiconductor Processing, 109, 104925. https://doi.org/10.1016/J.MSSP.2020.104925

    Article  CAS  Google Scholar 

  3. Rahimi-Nasrabadi, M., Naderi, H. R., Karimi, M. S., et al. (2017). Cobalt carbonate and cobalt oxide nanoparticles synthesis, characterization and supercapacitive evaluation. Journal of Materials Science: Materials in Electronics, 28, 1877–1888. https://doi.org/10.1007/s10854-016-5739-z

    Article  CAS  Google Scholar 

  4. Salimi, A., Mamkhezri, H., Hallaj, R., & Soltanian, S. (2008). Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sensors and Actuators B: Chemical, 129, 246–254. https://doi.org/10.1016/j.snb.2007.08.017

    Article  CAS  Google Scholar 

  5. Abudayyak, M., Gurkaynak, T. A., & Özhan, G. (2017). In vitro evaluation of cobalt oxide nanoparticle-induced toxicity. Toxicology and Industrial Health, 33, 646–654. https://doi.org/10.1177/0748233717706633

    Article  CAS  PubMed  Google Scholar 

  6. Ramachandran, R., Felix, S., Saranya, M., et al. (2013). Synthesis of cobalt sulfide-graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Transactions on Nanotechnology, 12. https://doi.org/10.1109/TNANO.2013.2278287

  7. Liu, Y., Jiang, W., Liu, M., et al. (2019). Ultrafine Co1–x S attached to porous interconnected carbon skeleton for sodium-ion batteries. Langmuir, 35, 16487–16495. https://doi.org/10.1021/acs.langmuir.9b03051

    Article  CAS  PubMed  Google Scholar 

  8. Yang, J., Zhang, Y., Sun, C., et al. (2015). Controlled synthesis of zinc cobalt sulfide nanostructures in oil phase and their potential applications in electrochemical energy storage. Journal of Materials Chemistry A, 3, 11462–11470. https://doi.org/10.1039/C5TA01739D

    Article  CAS  Google Scholar 

  9. Qu, B., Chen, Y., Zhang, M., et al. (2012). β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale, 4, 7810. https://doi.org/10.1039/c2nr31902k

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hafeez, M., Shaheen, R., Akram, B., et al. (2020). Green synthesis of cobalt oxide nanoparticles for potential biological applications. Materials Research Express, 7, 025019. https://doi.org/10.1088/2053-1591/ab70dd

    Article  ADS  CAS  Google Scholar 

  11. Haq, S., Abbasi, F., Ben Ali, M., et al. (2021). Green synthesis of cobalt oxide nanoparticles and the effect of annealing temperature on their physiochemical and biological properties. Materials Research Express, 8, 075009. https://doi.org/10.1088/2053-1591/ac1187

    Article  ADS  CAS  Google Scholar 

  12. Rajeswari, V. D., Khalifa, A. S., Elfasakhany, A., et al. (2023). Green and ecofriendly synthesis of cobalt oxide nanoparticles using Phoenix dactylifera L: antimicrobial and photocatalytic activity. Applied Nanoscience, 13, 1367–1375. https://doi.org/10.1007/s13204-021-02038-5

    Article  ADS  CAS  Google Scholar 

  13. Ajarem, J. S., Maodaa, S. N., Allam, A. A., et al. (2022). Benign synthesis of cobalt oxide nanoparticles containing red algae extract: Antioxidant, antimicrobial, anticancer, and anticoagulant activity. Journal of Cluster Science, 33, 717–728. https://doi.org/10.1007/s10876-021-02004-9

    Article  CAS  Google Scholar 

  14. Shanmuganathan, R., Sathiyavimal, S., Hoang Le, Q., et al. (2023). Green synthesized cobalt oxide nanoparticles using Curcuma longa for anti-oxidant, antimicrobial, dye degradation and anti-cancer property. Environmental Research, 236, 116747. https://doi.org/10.1016/j.envres.2023.116747

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Anuradha, C. T., & Raji, P. (2021). Citrus limon fruit juice-assisted biomimetic synthesis, characterization and antimicrobial activity of cobalt oxide (Co3O4) nanoparticles. Applied Physics A: Materials Science & Processing, 127, 55. https://doi.org/10.1007/s00339-020-04209-7

    Article  ADS  CAS  Google Scholar 

  16. Salavati-Niasari, M., Khansari, A., & Davar, F. (2009). Synthesis and characterization of cobalt oxide nanoparticles by thermal treatment process. Inorganica Chimica Acta, 362, 4937–4942. https://doi.org/10.1016/j.ica.2009.07.023

    Article  CAS  Google Scholar 

  17. Bibi, I., Nazar, N., Iqbal, M., et al. (2017). Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity. Advanced Powder Technology, 28, 2035–2043. https://doi.org/10.1016/j.apt.2017.05.008

    Article  CAS  Google Scholar 

  18. Khan, S., Ansari, A. A., Khan, A. A., et al. (2015). In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. JBIC, Journal of Biological Inorganic Chemistry, 20, 1319–1326. https://doi.org/10.1007/s00775-015-1310-2

    Article  CAS  PubMed  Google Scholar 

  19. Kokilavani, S., Syed, A., AL-Shwaiman, H. A., et al. (2021). Preparation of plasmonic CoS/Ag2WO4 nanocomposites: Efficient visible light driven photocatalysts and enhanced anti-microbial activity. Colloids and Interface Science Communications, 42, 100415. https://doi.org/10.1016/j.colcom.2021.100415

    Article  CAS  Google Scholar 

  20. Iqbal, J., Abbasi, B. A., Batool, R., et al. (2019). Biogenic synthesis of green and cost effective cobalt oxide nanoparticles using Geranium wallichianum leaves extract and evaluation of in vitro antioxidant, antimicrobial, cytotoxic and enzyme inhibition properties. Materials Research Express, 6, 115407. https://doi.org/10.1088/2053-1591/AB4F04

    Article  ADS  Google Scholar 

  21. Nafari, A., Cheraghipour, K., Sepahvand, M., et al. (2020). Nanoparticles: new agents toward treatment of leishmaniasis. Parasite Epidemiology and Control, 10, e00156. https://doi.org/10.1016/j.parepi.2020.e00156

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jeevanandam, J., Chan, Y. S., Pan, S., & Danquah, M. K. (2019). Metal oxide nanocomposites: cytotoxicity and targeted drug delivery applications. Hybrid Nanocomposites: Fundamentals, Synthesis and Applications, 111–147. https://doi.org/10.1201/9780429000966-3

  23. Xue, G., Bai, T., Wang, W., et al. (2022). Recent advances in various applications of nickel cobalt sulfide-based materials. Journal of Materials Chemistry A, 10, 8087–8106. https://doi.org/10.1039/D2TA00305H

    Article  CAS  Google Scholar 

  24. Guan, G., Wang, X., Huang, X., et al. (2018). Porous cobalt sulfide hollow nanospheres with tunable optical property for magnetic resonance imaging-guided photothermal therapy. Nanoscale, 10, 14190–14200. https://doi.org/10.1039/C8NR01926F

    Article  CAS  PubMed  Google Scholar 

  25. Yuan, M., Xu, S., Zhang, Q., et al. (2020). Bicompatible porous Co3O4 nanoplates with intrinsic tumor metastasis inhibition for multimodal imaging and DNA damage–mediated tumor synergetic photothermal/photodynamic therapy. Chemical Engineering Journal, 394, 124874. https://doi.org/10.1016/j.cej.2020.124874

    Article  CAS  Google Scholar 

  26. Lin, S., Wang, Y., Chen, Z., et al. (2018). Biomineralized enzyme-like cobalt sulfide nanodots for synergetic phototherapy with tumor multimodal imaging navigation. ACS Sustainable Chemistry & Engineering, 6, 12061–12069. https://doi.org/10.1021/acssuschemeng.8b02386

    Article  CAS  Google Scholar 

  27. Li, Z., Li, Z., Chen, L., et al. (2018). Polyethylene glycol-modified cobalt sulfide nanosheets for high-performance photothermal conversion and photoacoustic/magnetic resonance imaging. Nano Research, 11, 2436–2449. https://doi.org/10.1007/s12274-017-1865-z

    Article  CAS  Google Scholar 

  28. Novotna, B., Herynek, V., Rossner, P., et al. (2017). The effects of grafted mesenchymal stem cells labeled with iron oxide or cobalt-zinc-iron nanoparticles on the biological macromolecules of rat brain tissue extracts. International Journal of Nanomedicine, 12, 4519–4526. https://doi.org/10.2147/IJN.S133156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khoshroo, A., Mazloum-Ardakani, M., & Forat-Yazdi, M. (2018). Enhanced performance of label-free electrochemical immunosensor for carbohydrate antigen 15-3 based on catalytic activity of cobalt sulfide/graphene nanocomposite. Sensors and Actuators B: Chemical, 255, 580–587. https://doi.org/10.1016/j.snb.2017.08.114

    Article  CAS  Google Scholar 

  30. Li, J., Liu, Y., Tang, X., et al. (2020). Multiwalled carbon nanotubes coated with cobalt(II) sulfide nanoparticles for electrochemical sensing of glucose via direct electron transfer to glucose oxidase. Microchimica Acta, 187, 80. https://doi.org/10.1007/s00604-019-4047-8

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Z., Zhu, Y., Chi, M., et al. (2018). Fabrication of cobalt ferrite/cobalt sulfide hybrid nanotubes with enhanced peroxidase-like activity for colorimetric detection of dopamine. Journal of Colloid and Interface Science, 511, 383–391. https://doi.org/10.1016/j.jcis.2017.09.097

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Kristl, M., Dojer, B., Gyergyek, S., & Kristl, J. (2017). Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon, 3. https://doi.org/10.1016/j.heliyon.2017.e00273

  33. Bloch, K., Pardesi, K., Satriano, C., & Ghosh, S. (2021). Bacteriogenic platinum nanoparticles for application in nanomedicine. Frontiers in Chemistry, 9, 624344. https://doi.org/10.3389/fchem.2021.624344

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paul, B., Bhanja, P., Sharma, S., et al. (2021). Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 582, 322–332. https://doi.org/10.1016/j.jcis.2020.08.029

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Emadi, H., Salavati-Niasari, M., & Davar, F. (2012). Synthesis and characterization of cobalt sulfide nanocrystals in the presence of thioglycolic acid via a simple hydrothermal method. Polyhedron, 31, 438–442. https://doi.org/10.1016/j.poly.2011.09.047

    Article  CAS  Google Scholar 

  36. Jevševar, S., Kunstelj, M., & Porekar, V. G. (2010). PEGylation of therapeutic proteins. Biotechnology Journal, 5, 113–128. https://doi.org/10.1002/biot.200900218

    Article  CAS  PubMed  Google Scholar 

  37. Veronese, F. M., & Pasut, G. (2005). PEGylation, successful approach to drug delivery. Drug Discovery Today, 10, 1451–1458. https://doi.org/10.1016/S1359-6446(05)03575-0

    Article  CAS  PubMed  Google Scholar 

  38. Yadav, I., Purohit, S. D., Singh, H., et al. (2021). A highly transparent tri-polymer complex in situ hydrogel of HA, collagen and four-arm-PEG as potential vitreous substitute. Biomedical Materials, 16, 065018. https://doi.org/10.1088/1748-605X/ac2714

    Article  CAS  Google Scholar 

  39. Jegatheeswaran, S., & Sundrarajan, M. (2015). PEGylation of novel hydroxyapatite/PEG/Ag nanocomposite particles to improve its antibacterial efficacy. Materials Science and Engineering: C, 51, 174–181. https://doi.org/10.1016/j.msec.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  40. Bastos, V., Ferreira de Oliveira, J. M. P., Brown, D., et al. (2016). The influence of citrate or PEG coating on silver nanoparticle toxicity to a human keratinocyte cell line. Toxicology Letters, 249, 29–41. https://doi.org/10.1016/j.toxlet.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  41. Nicosia, A., Abbadessa, A., Vento, F., et al. (2021). Silver nanoparticles decorated with PEGylated porphyrins as potential theranostic and sensing agents. Materials (Basel), 14, 2764. https://doi.org/10.3390/ma14112764

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sadalage, P. S., Patil, R. V., Havaldar, D. V., et al. (2021). Optimally biosynthesized, PEGylated gold nanoparticles functionalized with quercetin and camptothecin enhance potential anti-inflammatory, anti-cancer and anti-angiogenic activities. Journal of Nanobiotechnology, 19, 84. https://doi.org/10.1186/s12951-021-00836-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saikumari, N., Dev, S. M., & Dev, S. A. (2021). Effect of calcination temperature on the properties and applications of bio extract mediated titania nano particles. Scientific Reports, 11, 1734. https://doi.org/10.1038/s41598-021-80997-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Munir, T., ur Rehman, N., Mahmood, A., et al. (2020). Structural, optical, electrical and thermo-electrical properties of Cu doped Co9S8-NPs synthesized via co-precipitation method. Chemical Physics Letters, 761, 137989. https://doi.org/10.1016/j.cplett.2020.137989

    Article  CAS  Google Scholar 

  45. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., et al. (2018). Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: Characterization and antimicrobial analysis. Materials Science in Semiconductor Processing, 82, 39–45. https://doi.org/10.1016/j.mssp.2018.03.017

    Article  CAS  Google Scholar 

  46. Khan, A. U., Khan, H. U., Alhar, M. S. O., et al. (2023). Antimicrobial, antioxidant, and antileishmanial activity of Tavernier glabra mediated ZnO NPs and Fe2O3 NPs. Inorganic Chemistry Communications, 148, 110297. https://doi.org/10.1016/j.inoche.2022.110297

    Article  CAS  Google Scholar 

  47. Ihsan, J., Farooq, M., Khan, M. A., et al. (2021). Synthesis, characterization, and biological screening of metal nanoparticles loaded gum acacia microgels. Microscopy Research and Technique, 84, 1673–1684. https://doi.org/10.1002/jemt.23726

    Article  CAS  PubMed  Google Scholar 

  48. Aziz, S., Abdullah, S., Anwar, H., et al. (2021). Effect of engineered nickel oxide nanoparticles on antioxidant enzymes in freshwater fish, Labeo rohita. Pakistan Veterinary Journal, 41, 424–428. https://doi.org/10.29261/pakvetj/2021.044

    Article  CAS  Google Scholar 

  49. Ghaedi, M., Heidarpour, S., Nasiri Kokhdan, S., et al. (2012). Comparison of silver and palladium nanoparticles loaded on activated carbon for efficient removal of Methylene blue: Kinetic and isotherm study of removal process. Powder Technology, 228, 18–25. https://doi.org/10.1016/j.powtec.2012.04.030

    Article  CAS  Google Scholar 

  50. Khan, M. A., Siddique, M. A. R., Sajid, M., et al. (2023). A comparative study of green and chemical cerium oxide nanoparticles (CeO2-NPs): From synthesis, characterization, and electrochemical analysis to multifaceted biomedical applications. Bionanoscience, 13, 667–685. https://doi.org/10.1007/s12668-023-01114-0

    Article  Google Scholar 

  51. Athar, T., Hakeem, A., Topnani, N., & Hashmi, A. (2012). Wet synthesis of monodisperse cobalt oxide nanoparticles. ISRN Materials Science, 2012, 1–5. https://doi.org/10.5402/2012/691032

    Article  CAS  Google Scholar 

  52. Karuppiah, S., Thangaraj, S., Arunachalam Palaniappan, S., & Olapalayam Lakshmanan, S. (2019). Influence of surfactants on structural, morphological, optical and antibacterial properties of SnO 2 nanoparticles. IET Nanobiotechnology, 13, 952–956. https://doi.org/10.1049/iet-nbt.2019.0095

    Article  PubMed  PubMed Central  Google Scholar 

  53. Boccuzzi, F., Chiorino, A., & Manzoli, M. (2000). FTIR study of the electronic effects of CO adsorbed on gold nanoparticles supported on titania. Surface Science, 454–456, 942–946. https://doi.org/10.1016/S0039-6028(00)00160-6

    Article  ADS  Google Scholar 

  54. Manigandan, R., Giribabu, K., Suresh, R., Vijayalakshmi, L., Stephen, A., & Narayanan, V. (2013). Cobalt oxide nanoparticles: Characterization and its electrocatalytic activity towards nitrobenzene. Chemical Science Transactions, 2, S47–S50. https://doi.org/10.7598/cst2013.10

    Article  CAS  Google Scholar 

  55. Sambathkumar, C., Nallamuthu, N., Kumar, M. K., et al. (2022). Electrochemical exploration of cobalt sulfide nanoparticles synthesis using cobalt diethyldithiocarbamate as single source precursor for hybrid supercapacitor device. Journal of Alloys and Compounds, 920, 165839. https://doi.org/10.1016/j.jallcom.2022.165839

    Article  CAS  Google Scholar 

  56. Muradov, M. B., Balayeva, O. O., Azizov, A. A., et al. (2018). Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method. Infrared Physics & Technology, 89, 255–262. https://doi.org/10.1016/j.infrared.2018.01.014

    Article  ADS  CAS  Google Scholar 

  57. Balasubramanian, R., Kim, B., Tripp, S. L., et al. (2002). Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles. Langmuir, 18, 3676–3681. https://doi.org/10.1021/la0156107

    Article  CAS  Google Scholar 

  58. Andra S, Satheesh Kumar Balu &, Jeevanandam J, Muthalagu M (2021) Emerging nanomaterials for antibacterial textile fabrication. Naunyn-Schmiedeberg’s Archives of Pharmacology 394:1355–1382. https://doi.org/10.1007/s00210-021-02064-8/Published

    Article  CAS  PubMed  Google Scholar 

  59. Shaikh, S., Nazam, N., Rizvi, S. M. D., et al. (2019). Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International Journal of Molecular Sciences, 20, 2468. https://doi.org/10.3390/ijms20102468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu, Y., Wei, M.-T., Ou-Yang, H. D., et al. (2016). Exposure to TiO2 nanoparticles increases Staphylococcus aureus infection of HeLa cells. Journal of Nanobiotechnology, 14, 1–16. https://doi.org/10.1186/s12951-016-0184-y

    Article  CAS  Google Scholar 

  61. Rudramurthy, S. M., Paul, R. A., Chakrabarti, A., et al. (2019). Invasive Aspergillosis by Aspergillus flavus: Epidemiology, diagnosis, antifungal resistance, and management. Journal of Fungus, 5, 55. https://doi.org/10.3390/jof5030055

    Article  CAS  Google Scholar 

  62. Cruz-Luna, A. R., Cruz-Martínez, H., Vásquez-López, A., & Medina, D. I. (2021). Metal nanoparticles as novel antifungal agents for sustainable agriculture: Current advances and future directions. Journal of Fungus, 7, 1033. https://doi.org/10.3390/jof7121033

    Article  CAS  Google Scholar 

  63. Allahverdiyev, A. M., Abamor, E. S., Bagirova, M., et al. (2013). Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Experimental Parasitology, 135, 55–63. https://doi.org/10.1016/j.exppara.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  64. Baliyan, S., Mukherjee, R., Priyadarshini, A., et al. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules, 27, 1326. https://doi.org/10.3390/molecules27041326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bhalodia, N., Nariya, P., Shukla, V., & Acharya, R. (2013). In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn. AYU (An International Quarterly Journal of Research in Ayurveda), 34, 209. https://doi.org/10.4103/0974-8520.119684

    Article  Google Scholar 

  66. Laloy, J., Minet, V., Alpan, L., et al. (2014). Impact of silver nanoparticles on haemolysis, platelet function and coagulation. Nanobiomedicine, 1, 4. https://doi.org/10.5772/59346

    Article  PubMed  PubMed Central  Google Scholar 

  67. Farooq, M., Ihsan, J., Mohamed, R. M., et al. (2022). Highly biocompatible formulations based on Arabic gum nano composite hydrogels: Fabrication, characterization, and biological investigation. International Journal of Biological Macromolecules, 209, 59–69. https://doi.org/10.1016/j.ijbiomac.2022.03.162

    Article  CAS  PubMed  Google Scholar 

  68. Hermosilla, E., Díaz, M., Vera, J., et al. (2022). Molecular weight identification of compounds involved in the fungal synthesis of AgNPs: Effect on antimicrobial and photocatalytic activity. Antibiotics, 11, 622. https://doi.org/10.3390/antibiotics11050622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Aslam Khan or Syed Ali Imran Bokhari.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Informed Consent

Not applicable

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahid, M.U., Khan, M.A., Ahmad, U. et al. A Comparative Study of PEGylated Cobalt Oxide Nanoparticles (Co3O4-NPs) and Cobalt Sulfide Nanoparticles (Co9S8-NPs) for Biological and Photocatalytic Applications. BioNanoSci. (2024). https://doi.org/10.1007/s12668-024-01322-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-024-01322-2

Keywords

Navigation