Skip to main content
Log in

Fluorescent carbon quantum dots synthesized from coconut shell for the detection of Fe3+ ion

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Fluorescent Carbon Quantum Dots (FCQDs), a new generation of carbon nanomaterials, have attracted a lot of attention throughout the years. This paper applied a straightforward and environmentally beneficial way to create water-soluble FCQDs hydrothermally from coconut shells. The as-prepared FCQDs have desirable functional groups and exhibit strong blue-emitting fluorescence with a relative quantum yield of 0.6 and 0.7%. The optical bandgap of FCQDs is calculated using UV–Vis spectra to be between 3.9 and 4.4 eV. Optical studies show that FCQDs have good fluorescence properties when excited at 360 nm. Whereas the fluorescence decay lifetime using TCSPC are 1.6–0.99 ns. The synthesized FCQDs were found by HRTEM to have a spherical shape and a particle-size distribution of 2.8–5.4 nm. As-prepared FCQDs has a very low hemotoxicity of 0.5 to 1.3%, which indicates that they have acceptable biocompatibility and are not hazardous. According to the DPPH antioxidant data, FCQDs had a stronger antioxidant activity compared to earlier reports. These important characteristics enable its applications in biomedical, food packaging, fluorescence imaging, photocatalysis, and sensing. The enhanced antioxidant characteristics of the produced FCQDs make them appropriate for use in biomedical, bioimaging, chemical, and industrial applications. The as-synthesized FCQDs were used for the detection of ferric ions with good selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Ekimov AI, Efros AL, Onushchenko AA (1985) Quantum size effect in semiconductor microcrystals. Solid State Commun 56:921–924. https://doi.org/10.1016/S0038-1098(85)80025-9

    Article  CAS  Google Scholar 

  2. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737. https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  3. Cao Q, Che R (2014) Synthesis of near-infrared fluorescent, elongated ring-like Ag2Se colloidal nanoassemblies. RSC Adv 4(32):16641–16646. https://doi.org/10.1039/C4RA00613E

    Article  CAS  Google Scholar 

  4. Cao Q, Cheng YF, Bi H, Zhao X, Yuan K, Liu Q, Li Q, Wanga M, Che R (2015) Crystal defect-mediated band-gap engineering: a new strategy for tuning the optical properties of Ag2Se quantum dots toward enhanced hydrogen evolution performance. J Mater Chem A 3(40):20051–20055. https://doi.org/10.1039/C5TA04978D

    Article  CAS  Google Scholar 

  5. Dager A, Baliyan A, Kurosu S, Maekawa T, Tachibana M (2020) Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: application of C-QDs to grow fluorescent protein crystals. Sci Rep 10:12333. https://doi.org/10.1038/s41598-020-69264-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei J, Zhang X, Sheng Y, Shen J, Huang P, Guo S, Pan J, Liu B, Feng B (2014) Simple one-step synthesis of water-soluble fluorescent carbon dots from waste paper. New J Chem 38:906–909. https://doi.org/10.1039/c3nj01325a

    Article  CAS  Google Scholar 

  7. Lim SY, Shen W, Gao Z (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939. https://doi.org/10.1039/c4tc00988f

    Article  CAS  Google Scholar 

  9. So RC, Sanggo JE, Jin L, Diaz JMA, Guerrero RA, He J (2017) Gram-scale synthesis and kinetic study of bright carbon dots from citric acid and citrus japonica via a microwave-assisted method. ACS Omega 2:5196–5208. https://doi.org/10.1021/acsomega.7b00551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chunduri LAA, Kurdekar A, Patnaik S, Aditha S, Prathibha C, Kamisetti V (2017) Single step synthesis of carbon quantum dots from coconut shell : evaluation for antioxidant efficacy and hemotoxicity. J Mater Sci Appl 3:83–93. http://www.aascit.org/journal/jmsa.

  11. Chunduri LAA, Kurdekar A, Patnaik S, Dev BV, Rattan TM, Kamisetti V (2016) Carbon quantum dots from coconut husk: evaluation for antioxidant and cytotoxic activity. Mater. Focus 5:55–61. https://doi.org/10.1166/mat.2016.1289

    Article  CAS  Google Scholar 

  12. Preethi M, Viswanathan C, Ponpandian N (2021) A green path to extract carbon quantum dots by coconut water: another fluorescent probe towards Fe3+ ions. Particuology 58:251–258. https://doi.org/10.1016/j.partic.2021.03.019

    Article  Google Scholar 

  13. Gao S, Wang X, Xu N, Lian H, Xu L, Zhang W, Xu C (2021) From coconut petiole residues to fluorescent carbon dots via a green hydrothermal method for Fe3+ detection. Cellulose 28:1647–1661. https://doi.org/10.1007/s10570-020-03637-1

    Article  CAS  Google Scholar 

  14. Ghimir A, Frunzo L, Pontoni L, d’Antonio G, Lens PNL, Esposito G, Pirozzi F (2015) Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manage 152:43–48. https://doi.org/10.1016/j.jenvman.2014.12.049

    Article  CAS  Google Scholar 

  15. Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 52:15673–15678. https://doi.org/10.1021/ie402421s

    Article  CAS  Google Scholar 

  16. Chaudhary N, Gupta PK, Eremin S, Solanki PR (2020) One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J Environ Chem Eng 8:103720. https://doi.org/10.1016/j.jece.2020.103720

    Article  CAS  Google Scholar 

  17. Murru C, Badía-Laíño R, Díaz-García ME (2020) Synthesis and characterization of green carbon dots for scavenging radical oxygen species in aqueous and oil samples. Antioxidants 9:1147. https://doi.org/10.3390/antiox9111147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qi H, Teng M, Liu M, Liu S, Li J, Yu H, Teng C, Huang Z, Liu H, Shao Q, Umar A, Ding T, Gao Q, Guo Z (2019) Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J Colloid Interface Sci 539:332–341. https://doi.org/10.1016/j.jcis.2018.12.047

    Article  CAS  PubMed  Google Scholar 

  19. Liang Q, Wang Y, Lin F, Jiang M, Li P, Huang B (2017) A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application. Anal Methods 9:3675–3681. https://doi.org/10.1039/C7AY01069A

    Article  CAS  Google Scholar 

  20. Zou WS, Kong WL, Zhao QC, Zhang J, Zhao X, Zhao D, Wang YQ (2019) A composite consisting of bromine-doped carbon dots and ferric ions as a fluorescent probe for determination and intracellular imaging of phosphate. Microchim Acta 186:576. https://doi.org/10.1007/s00604-019-3700-6

    Article  CAS  Google Scholar 

  21. Architha N, Ragupathi M, Shobana C, Selvankumar T, Kumar P, Lee YS, Kalai Selvan R (2021) Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican mint extract for Fe3+ detection and bio-imaging applications. Environ Res 199:111263. https://doi.org/10.1016/j.envres.2021.111263

    Article  CAS  PubMed  Google Scholar 

  22. Dager A, Uchida T, Maekawa T, Tachibana M (2019) Synthesis and characterization of Mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine Learning. Sci Rep 9:14004. https://doi.org/10.1038/s41598-019-50397-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tajik S, Dourandish Z, Zhang K, Beitollahi H, Van Le Q, Jang HW, Shokouhimehr M (2020) Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination. RSC Adv 10:15406–15429. https://doi.org/10.1039/d0ra00799d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan F, Yuan T, Sui L, Wang Z, Xi Z, Li Y, Li X, Fan L, Tan Z, Chen A, Jin M, Yang S (2018) Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat Commun 9:2249. https://doi.org/10.1038/s41467-018-04635-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xue M, Zhan Z, Zou M, Zhang L, Zhao S (2016) Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging. New J Chem 40:1698–1703. https://doi.org/10.1039/c5nj02181b

    Article  CAS  Google Scholar 

  26. Liu H, Ding L, Chen L, Chen Y, Zhou T, Li H, Xu Y, Zhao L, Huang N (2019) A facile, green synthesis of biomass carbon dots coupled with molecularly imprinted polymers for highly selective detection of oxytetracycline. J Ind Eng Chem 69:455–463. https://doi.org/10.1016/j.jiec.2018.10.007

    Article  CAS  Google Scholar 

  27. Liang Y, Zhang H, Zhang Y, Chen F (2015) Simple hydrothermal preparation of carbon nanodots and their application in colorimetric and fluorimetric detection of mercury ions. Anal Methods 7:7540–7547. https://doi.org/10.1039/c5ay01301a

    Article  CAS  Google Scholar 

  28. Jamaludin N, Rashid SA, Tan T (2019) Natural Biomass as Carbon Sources for the Synthesis of Photoluminescent Carbon Dots. In: Rashid SA, Raja Othman RNI, Hussein MZ (eds) Synthesis, technology and applications of carbon nanomaterials. Elsevier, pp 109–134

    Chapter  Google Scholar 

  29. Sun D, Ban R, Zhang PH, Wu GH, Zhang JR, Zhu JJ (2013) Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon N. Y. 64:424–434. https://doi.org/10.1016/j.carbon.2013.07.095

    Article  CAS  Google Scholar 

  30. Khan WU, Wang D, Zhang W et al (2017) High quantum yield green-emitting carbon dots for Fe(III) detection, biocompatible fluorescent ink and cellular imaging. Sci Rep 7:14866. https://doi.org/10.1038/s41598-017-15054-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang Z, Xu M, Liu Y, He F et al (2014) Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale 6:1890–1895. https://doi.org/10.1039/c3nr05380f

    Article  CAS  PubMed  Google Scholar 

  32. Yuan B, Guan S, Sun X, Li X et al (2018) Highly efficient carbon dots with reversibly switchable green-red emissions for trichromatic white light-emitting diodes. ACS Appl Mater Interfaces 10:16005–16014. https://doi.org/10.1021/acsami.8b02379

    Article  CAS  PubMed  Google Scholar 

  33. Muktha H, Sharath R, Kottam N et al (2020) Green synthesis of carbon dots and evaluation of its pharmacological activities. Bionanoscience 10:731–744. https://doi.org/10.1007/s12668-020-00741-1

    Article  Google Scholar 

  34. Gudimella KK, Gedda G, Kumar PS (2022) Novel synthesis of fluorescent carbon dots from bio-based Carica Papaya Leaves: optical and structural properties with antioxidant and anti-inflammatory activities. Environ Res 204:111854. https://doi.org/10.1016/j.envres.2021.111854

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Pang J, Xu F, Zhang X (2016) Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci Rep 6:31100. https://doi.org/10.1038/srep31100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boruah A, Saikia M, Das T, Goswamee RL, Saikia BK (2020) Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water. J Photochem Photobiol B Biol 209:111940. https://doi.org/10.1016/j.jphotobiol.2020.111940

    Article  CAS  Google Scholar 

  37. Zhao Y, Zhang Y, Liu X et al (2017) Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Sci Rep 7:4452. https://doi.org/10.1038/s41598-017-04073-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Surendran P, Lakshmanan A, Vinitha G, Ramalingam G, Rameshkumar P (2020) Facile preparation of high fluorescent carbon quantum dots from orange waste peels for nonlinear optical applications. Luminescence 35:196–202. https://doi.org/10.1002/bio.3713

    Article  CAS  PubMed  Google Scholar 

  39. Ge M, Huang X, Ni J, Han Y et al (2021) One-step synthesis of self-quenching-resistant biomass-based solid-state fluorescent carbon dots with high yield for white lighting emitting diodes. Dye Pigment 185:108953. https://doi.org/10.1016/j.dyepig.2020.108953

    Article  CAS  Google Scholar 

  40. Das GS, Shim JP, Bhatnagar A, Tripathi KM, Kim T (2019) Biomass-derived carbon quantum dots for visible-light-induced photocatalysis and label-free detection of Fe(III) and ascorbic acid. Sci Rep 9:15084. https://doi.org/10.1038/s41598-019-49266-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu H, Li Z, Sun Y, Geng X, Hu Y, Meng H, Ge J, Qu L (2018) Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci Rep 8:1086. https://doi.org/10.1038/s41598-018-19373-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu E, Li D, Zhou X et al (2019) Highly emissive carbon dots in solid state and their applications in light-emitting devices and visible light communication. ACS Sustain Chem Eng 7:9301–9308. https://doi.org/10.1021/acssuschemeng.9b00325

    Article  CAS  Google Scholar 

  43. Wu F, Su H, Wang K, Wong WK, Zhu X (2017) Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells. Int J Nanomedicine 12:7375–7391. https://doi.org/10.2147/IJN.S147165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yan F, Bai Z, Zu F, Zhang Y, Sun X, Ma T, Chen L (2019) Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchim Acta 186:113. https://doi.org/10.1007/s00604-018-3221-8

    Article  CAS  Google Scholar 

  45. De B, Karak N (2013) A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv 3:8286–8290. https://doi.org/10.1039/c3ra00088e

    Article  CAS  Google Scholar 

  46. Hui N, Minjie L, Quanshun L, Shaojun L, Yingying T, Lan S, Wei S, Sean Z (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26:3104–3112. https://doi.org/10.1021/cm5003669

    Article  CAS  Google Scholar 

  47. Ewansiha CJ, Ebhoaye JE, Asia IO, Ekebafe LO, Ehigie C (2012) Proximate and mineral composition of coconut (Cocos Nucifera) shell. Int J Pure Appl Sci Technol 13(1):57–60

    CAS  Google Scholar 

  48. Yang H, Liu Y, Guo Z, Lei B et al (2019) Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat Commun 10:1789. https://doi.org/10.1038/s41467-019-09830-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Genc R, Alas MO, Harputlu E (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci Rep 7:11222. https://doi.org/10.1038/s41598-017-11347-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hu D, Lin KH, Xu Y et al (2021) Microwave-assisted synthesis of fluorescent carbon dots from nanocellulose for dual-metal ion-sensor probe: Fe (III) and Mn (II). Cellulose 28:9705–9724. https://doi.org/10.1007/s10570-021-04126-9

    Article  CAS  Google Scholar 

  51. Kwon W, Do S, Kim JH, Seok Jeong M, Rhee SW (2015) Control of photoluminescence of carbon nanodots via surface functionalization using para-substituted anilines. Sci Rep 5:12604. https://doi.org/10.1038/srep12604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao M, Song H, Chen X, Lian W (2007) Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin. Acta Mater 55:6144–6150. https://doi.org/10.1016/j.actamat.2007.07.013

    Article  CAS  Google Scholar 

  53. Fitzmaurice SD, Sivamani RK, Isseroff RR (2011) Antioxidant therapies for wound healing: a clinical guide to currently commercially available products. Skin Pharmacol Physiol 24:113–126. https://doi.org/10.1159/000322643

    Article  CAS  PubMed  Google Scholar 

  54. Gómez-Estaca J, López-de-Dicastillo C, Hernández-Muño P, Catalá R, Gavara R (2014) Advances in antioxidant active food packaging. Trends Food Sci Technol 35:42–51. https://doi.org/10.1016/j.tifs.2013.10.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their gratitude to GNR instrumentation Centre, University of Madras, Guindy Campus.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amutha Santhanam.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Human and animal rights

This research does not involve Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirubanithy, K., Ponnalagar, D. & Santhanam, A. Fluorescent carbon quantum dots synthesized from coconut shell for the detection of Fe3+ ion. Carbon Lett. (2024). https://doi.org/10.1007/s42823-024-00746-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42823-024-00746-w

Keywords

Navigation