Skip to main content
Log in

Investigation on microstructures, melting and crystallization behaviors, mechanical and processing properties of β-isotactic polypropylene /CaCO3 toughening masterbatch composites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, β-isotactic polypropylene (β-iPP)/CaCO3 toughening masterbatch (CTM) composites were compounded in a single screw extruder. The microstructures and properties of the composites were investigated. It was shown that CTM influenced the crystallinity and crystallization temperature of β-iPP. The flexural modulus and storage modulus (E’) at 23 °C increased with the increasing CTM content, implying the increased stiffness of the composites. The improved miscibility between β-iPP and CTM was demonstrated by the decreased glass transition temperatures of the composites. The Izod notched impact strength at 23 °C of the composites was directly related to the CTM content because of the competition between the morphological feature of β-iPP and the content of inorganic rigid toughening particles. The critical ligament thickness (τ c = 1.47 μm) at 40% CTM content was calculated according to the modified Wu’s equation. The morphologies of impact fractured surfaces were observed and the massive shear deformation was related to the debonding of CaCO3 particles. The presence of CTM also improved the melt flowability and dimensional stability but it was detrimental to heat deflection temperature (HDT) of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vranjes N, Rek V (2010) Effect of EPDM on morphology, mechanical properties, crystallization behavior and viscoelastic properties of iPP+HDPE blends. Macromol Symp 258(1):90–100

    Article  Google Scholar 

  2. Thio YS, Argon AS, Cohen RE, Weinberg M (2002) Toughening of isotactic polypropylene with CaCO3 particles. Polymer 43(13):3661–3674

    Article  CAS  Google Scholar 

  3. Chan CM, Wu J, Li JX, Cheung YK (2002) Polypropylene/calcium carbonate nanocomposites. Polymer 43(10):2981–2992

    Article  CAS  Google Scholar 

  4. Bartczak Z, Galeski A (2014) Mechanical properties of polymer blends. In: Utracki LA, Wilkie CA (eds) Polymer Blends handbook. Springer, Dordrecht,

    Google Scholar 

  5. Zuiderduin WCJ, Huétink J, Gaymans RJ (2006) Rigid particle toughening of aliphatic polyketone. Polymer 47(16):5880–5887

    Article  CAS  Google Scholar 

  6. Meng M, Dou Q (2009) Effect of filler treatment on crystallization, morphology and mechanical properties of polypropylene/calcium carbonate composites. J Macromol Sci, Part B: Phys 48(2):213–225

    Article  CAS  Google Scholar 

  7. Jancar J, Dibenedetto AT (1994) The mechanical properties of ternary composites of polypropylene with inorganic fillers and elastomer inclusions. J Mater Sci 29(17):4651–4658

    Article  CAS  Google Scholar 

  8. Wang X, Sun J, Huang R (2010) Influence of the compounding route on the properties of polypropylene/nano-CaCO3/ethylene-propylene-diene terpolymer tercomponent composites. J Appl Polym Sci 99(5):2268–2272

    Article  Google Scholar 

  9. Busico V, Cipullo R (2001) Microstructure of polypropylene. Prog Polym Sci 26(3):443–533

    Article  CAS  Google Scholar 

  10. Trifonova D, Varga J, Vancso GJ (1998) AFM study of lamellar thickness distributions in high temperature melt-crystallization of β-polypropylene. Polym Bull 41(3):341–348

    Article  CAS  Google Scholar 

  11. Lezak E, Bartczak Z, Galeski A (2006) Plastic deformation of the γ phase in isotactic polypropylene in plane-strain compression. Macromolecules 40(14):4933–4941

    Article  Google Scholar 

  12. Jin Y, Hiltner A, Baer E, Masirek R, Piorkowska E, Galeski A (2006) Formation and transformation of smectic polypropylene nanodroplets. J Polym Sci, Part B: Polym Phys 44(13):1795–1803

    Article  CAS  Google Scholar 

  13. Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B: Phys 41(4–6):1121–1171

    Article  Google Scholar 

  14. Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci, Part B: Polym Phys 34(4):657–670

    Article  CAS  Google Scholar 

  15. Li JX, Cheung WL (1999) Conversion of growth and recrystallisation of β-phase in doped iPP. Polymer 40(8):2085–2088

    Article  CAS  Google Scholar 

  16. Kotek J, Raab M, Baldrian J, Grellmann W (2002) The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J Appl Polym Sci 85(6):1174–1184

    Article  CAS  Google Scholar 

  17. Varga J, Mudra I, Ehrenstein GW (1999) Crystallization and melting of β-nucleated isotactic polypropylene. J Therm Anal Calorim 56(3):1047–1057

    Article  CAS  Google Scholar 

  18. Fujiyama M (1998) Structure and properties of injection moldings of β-crystal nucleator-added PP. part 4 effect of copolymerizations with ethylene of base resin. Int Polym Process 13(3):291–298

    Article  CAS  Google Scholar 

  19. Fujiyama M (1995) Structures and properties of injection moldings of β-crystal nucleator-added polypropylenes. Part 1 effect of β-crystal nucleator content. Int Polym Process 10(2):172–178

    Article  CAS  Google Scholar 

  20. Shi Y, Dou Q (2013) Effect of β-nucleating agent on the crystallization, mechanical properties, and heat resistance of injection-molded isotactic polypropylene. J Macromol Sci Part B: Phys 52(3):476–488

    Article  CAS  Google Scholar 

  21. Tjong SC, Shen JS, Li RKY (1995) Impact fracture toughness of β-form polypropylene. Scr Metall Mater 33(3):503–508

    Article  CAS  Google Scholar 

  22. Kotek J, Kelnar I, Baldrian J, Raab M (2004) Tensile behaviour of isotactic polypropylene modified by specific nucleation and active fillers. Eur Polym J 40(4):679–684

    Article  CAS  Google Scholar 

  23. Tjong SC, Li RKY, Cheung T (1997) Mechanical behavior of CaCO3 particulate-filled β-crystalline phase polypropylene composites. Polym Eng Sci 37(1):166–172

    Article  CAS  Google Scholar 

  24. Zhang QX, ZZ Y, Xie XL, Ma YW (2004) Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer 45(17):5985–5994

    Article  CAS  Google Scholar 

  25. Li L, Dou Q (2011) Effect of malonic acid treatment on crystal structure, melting behavior, morphology, and mechanical properties of isotactic polypropylene/nano-CaCO3 composites. Polym Compos 31(6):966–973

    Article  Google Scholar 

  26. Zhang Y, Pan E, Chen R, Pu R, Hui Z (1997) China Patent ZL 95111154.X

  27. Zhang Y, Pan E, Chen R (1998) China Patent ZL 95112772.1

  28. Duan J, Dou Q (2013) Investigation on β-polypropylene/PP-g-MAH/ surface-treated calcium carbonate composites. Polym Compos 33(12):2245–2261

    Article  Google Scholar 

  29. Shi YH, Dou Q (2013) Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim 112(2):901–911

    Article  CAS  Google Scholar 

  30. Dou G, Dou Q (2015) Crystallization kinetics, spherulitic morphology, mechanical properties and heat resistance of β-nucleated impact-resistant propylene-ethylene copolymer. Thermochim Acta 614:21–32

    Article  CAS  Google Scholar 

  31. Lu Q-C, Dou Q (2017) Investigation of the microstructures, properties, and toughening mechanism of polypropylene/calcium carbonate toughening masterbatch composites. J Appl Polym Sci 134:45515

  32. Varga J, Stoll K, Menyhárd A, Horváth Z (2011) Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci 121(3):1469–1480

    Article  CAS  Google Scholar 

  33. Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40(5):1219–1222

    Article  CAS  Google Scholar 

  34. Brandrup J, Immergut EH, Grulke EA (1999) Polymer Handbook, 4th ed. Wiley: New York. V/13, V/23

  35. Mamat A, Trochu TF, Sanschagrin B (1995) Analysis of shrinkage by dual kriging for filled and unfilled polypropylene molded parts. Polym Eng Sci 35(19):1511–1520

    Article  CAS  Google Scholar 

  36. Brachet P, Høydal LT, Hinrichsen EL, Melum F (2008) Modification of mechanical properties of recycled polypropylene from post-consumer containers. Waste Manag 28(12):2456

    Article  CAS  Google Scholar 

  37. Liao K, Chen X, Zheng C (2010) Surface modification of calcium carbonate used for polypropylene blending with dimeric aluminates. J Appl Polym Sci 57(10):1245–1250

    Article  Google Scholar 

  38. Chen JH, Zhong JC, Cai YH, WB S, Yang YB (2007) Morphology and thermal properties in the binary blends of poly(propylene-co-ethylene) copolymer and isotactic polypropylene with polyethylene. Polymer 48(10):2946–2957

    Article  CAS  Google Scholar 

  39. Fang C, Nie L, Liu S, Yu R, An N, Li S (2013) Characterization of polypropylene-polyethylene blends made of waste materials with compatibilizer and nano-filler. Compos Part B Eng 55(12):498–505

    Article  CAS  Google Scholar 

  40. Nuñez AJ, Kenny JM, Reboredo MM, Aranguren MI, Marcovich NE (2002) Thermal and dynamic mechanical characterization of polypropylene-wood flour composites. Polym Eng Sci 42(4):733–742

    Article  Google Scholar 

  41. Min AM, Chuah TG, Chantara TR (2008) Thermal and dynamic mechanical analysis of polyethylene modified with crude palm oil. Mater Des 29(5):992–999

    Article  CAS  Google Scholar 

  42. Vaidyanathan J, Vaidyanathan TK (1995) Dynamic mechanical analysis of heat, microwave and visible light cure denture base resins. J Mater Sci Mater Med 6(11):670–674

    Article  CAS  Google Scholar 

  43. Hristov V, Vasileva S (2003) Dynamic mechanical and thermal properties of modified poly(propylene) wood fiber composites. Macromol Mater Eng 288(10):798–806

    Article  CAS  Google Scholar 

  44. Grein C (2005) Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci 188:43–104

    Article  CAS  Google Scholar 

  45. Rong MZ, Zhang MQ, Zheng YX, Zeng HM, Walter R, Friedrich K (2001) Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42(1):167–183

    Article  CAS  Google Scholar 

  46. Yang K, Yang Q, Li G, Sun Y, Feng D (2006) Mechanical properties and morphologies of polypropylene with different sizes of calcium carbonate particles. Polym Compos 27(4):443–450

    Article  CAS  Google Scholar 

  47. Yuan Q, Shah JS, Bertrand KJ, Misra RDK (2009) On processing and impact deformation behavior of high density polyethylene (HDPE)-calcium carbonate nanocomposites. Macromol Mater Eng 294(2):141–151

    Article  CAS  Google Scholar 

  48. Chen JW, Dai J, Yang JH, Zhang N, Huang T, Wang Y (2013) Enhancing chain segments mobility to improve the fracture toughness of polypropylene. Chin J Polym Sci 31(2):232–241

    Article  CAS  Google Scholar 

  49. Arkhireyeva SHA (2002) Influence of temperature on work of fracture parameters in semi-crystalline polyester films. J Macromol Sci Par B: Phys 41(4–6):863–880

    Google Scholar 

  50. Gupta AK, Ratnam BK, Srinivasan KR (1992) Impact toughening of polypropylene by ethylene vinyl acetate copolymer. J Appl Polym Sci 45(7):1303–1312

    Article  CAS  Google Scholar 

  51. Bai H, Wang Y, Song B, Li Y, Liu L (2008) Effect of nucleating agent on the brittle-ductile transition behavior of polypropylene/ethylene-octene copolymer blends. J Polym Sci Par B: Polym Phys Ed 46(6):577–588

    Article  CAS  Google Scholar 

  52. Fujiyama M, Wakino T, Kawasaki Y (1988) Structure of skin layer in injection-molded polypropylene. J Appl Polym Sci 35(1):29–49

    Article  CAS  Google Scholar 

  53. Wu S (1985) Phase structure and adhesion in polymer blends: a criterion for rubber toughening. Polymer 26(12):1855–1863

    Article  CAS  Google Scholar 

  54. Wu S (1988) A generalized criterion for rubber toughening: the critical matrix ligament thickness. J Appl Polym Sci 35(2):549–561

    Article  CAS  Google Scholar 

  55. Liu ZH, Zhu XG, Li Q, Qi ZN, Wang FS (1998) Effect of morphology on the brittle ductile transition of polymer blends: 5. The role of CaCO3 particle size distribution in high density polyethylene/CaCO3 composites. Polymer 39(10):1863–1868

    Article  CAS  Google Scholar 

  56. Liu ZH, Kwok KW, Li RKY, Choy CL (2002) Effects of coupling agent and morphology on the impact strength of high density polyethylene/CaCO3 composites. Polymer 43(8):2501–2506

    Article  CAS  Google Scholar 

  57. Lin Y, Chen H, Chan CM, Wu J (2011) Effects of coating amount and particle concentration on the impact toughness of polypropylene/CaCO3 nanocomposites. Eur Polym J 47(3):294–304

    Article  CAS  Google Scholar 

  58. Shelesh-Nezhad K, Taghizadeh A (2007) Shrinkage behavior and mechanical performances of injection molded polypropylene/talc composites. Polym Eng Sci 47(12):2124–2128

    Article  CAS  Google Scholar 

  59. Chen D, Yang H (2010) Polypropylene/combinational inorganic filler micro−/nanocomposites: synergistic effects of micro−/nanoscale combinational inorganic fillers on their mechanical properties. J Appl Polym Sci 115(1):624–634

    Article  CAS  Google Scholar 

  60. Wong CY (2003) Heat deflection characteristics of polypropylene and polypropylene/polyethylene binary systems. Compos Part B Eng 34(2):199–208

    Article  Google Scholar 

Download references

Funding

This study was funded by the Innovation Foundation for Graduate Students of Jiangsu Province (SJLX16_0295) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Dou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Qc., Dou, Q. Investigation on microstructures, melting and crystallization behaviors, mechanical and processing properties of β-isotactic polypropylene /CaCO3 toughening masterbatch composites. J Polym Res 24, 206 (2017). https://doi.org/10.1007/s10965-017-1375-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1375-4

Keywords

Navigation