Skip to main content
Log in

Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isotactic polypropylenes (iPP) samples were incorporated with two β-nucleating agents (NT-A and NT-C), respectively, and their non-isothermal crystallization and subsequent melt behaviors were investigated by means of differential scanning calorimeter. Jeziorny, Ozawa, and Mo methods were used to analyze non-isothermal crystallization kinetics of pure iPP and β-nucleated iPP samples. The activation energies (ΔE) of non-isothermal crystallization were calculated by Kissinger method. And the nucleation activities were calculated according to the Dobreva method. It is found that the crystallization temperature decreases and the crystallization rate increases with increasing cooling rate. The crystallization temperature and crystallization rate of nucleated iPP are higher than those of pure iPP. The order of ΔE is NT-A/iPP > pure iPP > NT-C/iPP. NT-C is more efficient than NT-A as a β-nucleating agent. But the non-isothermal crystallization kinetics of α- and β-phases cannot be determined separately. The present results should be considered with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Norton DR, Keller A. The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer. 1985;26:704–16.

    Article  CAS  Google Scholar 

  2. Lovinger AJ, Chua JO, Gryte CC. Studies on the α- and β-forms of isotactic polypropylene by crystallization in temperature gradient. J Polym Sci: Polym Phys Ed. 1977;15:641–56.

    Article  CAS  Google Scholar 

  3. Varga J, Karger-Kocsis J. Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci B. 1996;34:657–70.

    Article  CAS  Google Scholar 

  4. Leugering HJ. Einfluss der Kristallstuktur und Überstuktur auf einige Eigeschaften von Polypropylen. Makromol Chem. 1967;109:204–16.

    Article  CAS  Google Scholar 

  5. Fujiyama M. Structures and properties of injection moldings of β-crystal nucleator-added polypropylenes. Part 1. Effect of β-crystal nucleator content. Int Polym Proc. 1995;X:172–8.

    Google Scholar 

  6. Fujiyama M. Structures and properties of injection moldings of β-crystal nucleator-added polypropylenes. Part 3. Comparison of nucleating effect between γ-quinacridone and quinacridonequinone. Int Polym Proc. 1996;XI:271–4.

    Google Scholar 

  7. Varga J, Menyhard A. Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules. 2007;40:2422–31.

    Article  CAS  Google Scholar 

  8. Lu Q, Dou Q. Crystalline form transformation of isotactic polypropylene induced by N,N′-diphenyl glutaramide. e-Polymers. 2008;76:1–11.

    Google Scholar 

  9. Dou Q. Effect of N,N′-diphenyl adipamide on the formation of the β-crystalline form in isotactic polypropylene. J Appl Polym Sci. 2009;111:1738–44.

    Article  CAS  Google Scholar 

  10. Lu Q, Dou Q. β-crystal formation of isotactic polypropylene induced by N,N′-dicyclohexylsuccinamide. J Polym Res. 2009;16:555–60.

    Article  CAS  Google Scholar 

  11. Varga J, Stoll K, Menyhard A, Horvath Z. Crystallization of isotactic polypropylene in the presence of β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;121:1469–80.

    Article  CAS  Google Scholar 

  12. Shi G, Zhang X, Qiu Z. Crystallization kinetics of β-phase polypropylene. Makromol Chem. 1992;193:583–91.

    Article  CAS  Google Scholar 

  13. Varga J, Mudra I, Ehrenstein GW. Highly active thermally stable β nucleating agents for isotactic polypropylene. J Appl Polym Sci. 1999;74:2357–68.

    Article  CAS  Google Scholar 

  14. Menyhárd A, Varga J, Molnár G. Comparison of different β-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83:625–30.

    Article  Google Scholar 

  15. Dou Q. Effect of metallic salts of pimelic acid and crystallization temperatures on the formation of β crystalline form in isotactic poly(propylene). J Macromol Sci B. 2007;46:1063–80.

    Article  CAS  Google Scholar 

  16. Dou Q, Lu QL, Li HD. Effect of metallic salts of malonic acid on the formation of β crystalline form in isotactic polypropylene. J Macromol Sci B. 2008;47:900–12.

    Article  CAS  Google Scholar 

  17. Dou Q, Lu QL, Li HD. Effect of metallic salts of glutaric acid on the formation of β-crystalline form in isotactic polypropylene. J Elastomers Plast. 2009;41:509–22.

    Article  CAS  Google Scholar 

  18. Feng JC, Chen MC, Huang ZT, Guo YQ, Hu HQ. Effects of mineral additives on the β-crystalline form of isotactic polypropylene. J Appl Polym Sci. 2002;85:1742–8.

    Article  CAS  Google Scholar 

  19. Zeng AR, Zheng YY, Qiu SC, Guo Y. Isothermal crystallization and melting behavior of polypropylene with lanthanum complex of cyclodextrin derivative as a β-nucleating agent. J Appl Polym Sci. 2011;121:3651–61.

    Article  CAS  Google Scholar 

  20. Zhang Z, Chen CY, Wang CG, Guo JQ, Mai KC. Nonisothermal crystallization kinetics of isotactic polypropylene nucleated with a novel supported β-nucleating agent. J Therm Anal Calorim. 2011;103:311–8.

    Article  CAS  Google Scholar 

  21. Duan QJ, Wang B, Hong BD, Wang HP. Studies on the nonisothermal crystallization behavior of polypropylene/multiwalled carbon nanotubes nanocomposites. J Macromol Sci B. 2010;49:1094–104.

    Article  CAS  Google Scholar 

  22. Xu LL, Zhang XJ, Xu K, Lin SQ, Chen MC. Variation of non-isothermal crystallization behavior of isotactic polypropylene with varying β-nucleating agent content. Polym Int. 2010;59:1441–50.

    Article  CAS  Google Scholar 

  23. Qin J, Chen XL, Yu J, Wang Y, Tian YZ, Wu S. Nonisothermal crystallization kinetics of isotactic polypropylene containing nucleating agent and dispersant. J Appl Polym Sci. 2010;117:1047–54.

    Article  CAS  Google Scholar 

  24. Tjong SC, Xu SA. Non-isothermal crystallization kinetics of calcium carbonate-filled β-crystalline phase polypropylene composites. Polym Int. 1997;44:95–103.

    Article  CAS  Google Scholar 

  25. Ahangari MG, Fereidoon A, Kordani N, Garmabi H. Effect of nano-nucleating agent addition on the isothermal and nonisothermal crystallization kinetics of isotactic polypropylene. Polym Bull. 2011;66:239–58.

    Article  Google Scholar 

  26. Yang ZG, Zhang ZS, Tao YJ, Mai KC. Effects of polyamide 6 on the crystallization and melting behavior of β-nucleated polypropylene. Eur Polym J. 2008;44:3754–63.

    Article  CAS  Google Scholar 

  27. Yang ZG, Mai KC. Nonisothermal crystallization and melting behavior of β-nucleated isotactic polypropylene and polyamide 66 blends. J Appl Polym Sci. 2011;119:3566–73.

    Article  CAS  Google Scholar 

  28. Yi QF, Wen XJ, Dong JY, Han CC. A novel effective way of comprising β-nucleating agent in isotactic polypropylene (i-PP): polymerized dispersion and polymer characterization. Polymer. 2008;49:5053–63.

    Article  CAS  Google Scholar 

  29. Tao YJ, Pan YX, Zhang ZS, Mai KC. Non-isothermal crystallization, melting behavior and polymorphism of polypropylene in β-nucleated polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J. 2008;44:1165–74.

    Article  CAS  Google Scholar 

  30. Yang ZG, Chen CY, Liang DW, Zhang ZS, Mai KC. Melting characteristic and β-crystal content of β-nucleated polypropylene/polyamide 6 alloys prepared using different compounding methods. Polym Int. 2009;58:1366–72.

    Article  CAS  Google Scholar 

  31. Zhao SC, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene. Polymer. 2008;49:2745–54.

    Article  CAS  Google Scholar 

  32. Shan HF, Lickfield GC. Crystallization kinetics study of polyethylene. Int J Polym Anal Charact. 2007;12:327–38.

    Article  CAS  Google Scholar 

  33. Supaphol P, Thanomkiat P, Phillips RA. Influence of molecular characteristics on non-isothermal melt-crystallization kinetics of syndiotactic polypropylene. Polym Test. 2004;23:881–95.

    Article  CAS  Google Scholar 

  34. Zhang YF, Li X, Wei XS. Non-isothermal crystallization kinetics of isotactic polypropylene nucleated with 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol. J Therm Anal Calorim. 2010;100:661–5.

    Article  CAS  Google Scholar 

  35. Varga J. Melting memory effect of the β-modification of polypropylene. J Therm Anal. 1986;31:165–72.

    Article  CAS  Google Scholar 

  36. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  37. Avrami M. Kinetics of phase change. II. Transformation-time relation for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  38. Avrami M. Kinetics of phase change. III. Granulation, phase change and microstructure. J Chem Phys. 1941;99:177–84.

    Article  Google Scholar 

  39. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  40. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  41. Liu TX, Mo ZS, Zhang HF. Nonisothermal crystallization behavior of a novel poly(aryl ether ketone): PEDEKmK. J Appl Polym Sci. 1998;67:815–21.

    Article  CAS  Google Scholar 

  42. Wang JB, Dou Q. Nonisothermal crystallization kinetics and melting behaviors of isotactic polypropylene/N,N′,N″-tris-tert.butyl-1,3,5-benzene-tricarboxamide. J Macromol Sci B. 2008;47:629–42.

    Article  CAS  Google Scholar 

  43. Kissinger H. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  44. Wei ZY, Zhang WX, Chen GY, Liang JC, Yang S, Wang P, Liu LA. Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim. 2010;102:775–83.

    Article  CAS  Google Scholar 

  45. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J Non-Cryst Solids. 1993;162:1–12.

    Article  CAS  Google Scholar 

  46. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids. 1993;162:13–25.

    Article  CAS  Google Scholar 

  47. Chen YH, Mao YM, Li ZM, Hsiao BS. Competitive growth of α and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules. 2010;43:6760–71.

    Article  CAS  Google Scholar 

  48. Menyhárd A, Dora G, Horváth Z, Faludi G, Varga J. Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim. 2012. doi:10.1007/s10973-011-1900-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Dou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, YH., Dou, Q. Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim 112, 901–911 (2013). https://doi.org/10.1007/s10973-012-2611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2611-0

Keywords

Navigation