Skip to main content
Log in

Experimental investigation on the mechanical properties of Co-polypropylene/GF/CaCO3 hybrid nanocomposites

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

This study aimed to acquire a balance of mechanical properties comprising impact, tensile and flexural performances in PP based blend. In this respect, co-PP was employed as matrix because of its intrinsic high impact behavior. Hybrid nanocomposites based on co-PP and containing 10 wt % micron-sized short glass fibers (GF) and 2 to 8 wt % nano precipitated CaCO3 (NPCC) particles were produced by applying a two-step melt compounding method. Maleic anhydride grafted polypropylene (MAPP) was used as compatibilizer. Strong glass fiber-matrix adhesion and relatively uniform distribution of nano-CaCO3 particles were observed in SEM images. The maximum tensile strength was observed in co-PP hybrid nanocomposite containing 10 wt % glass fiber and 5 wt % nano-CaCO3 which was 58% more than that of neat co-PP. Flexural strength raised as much as 11% by adding glass fiber. The maximum flexural strength was obtained by incorporating 10 wt % glass fiber and 8 wt % nano-CaCO3 into co-PP matrix which was 24% higher than that of neat co-PP. The impact strength decreased upon addition of 10 wt % glass fiber and 5 and 8 wt % nano-CaCO3, this was attributed to the inherent high impact behavior of co-PP as well as strong interfacial interaction between dispersed phases and polymeric matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tripathi, Practical Guide to Polypropylene (Rapra Technology, Shrewsbury, 2002).

    Google Scholar 

  2. R. Hartle, G. Riding, and T. Washburn, Proprietary Engineering Resins as Additives to Polypropylene (GE Advanced Materials, Las Vegas, Nevada, 2005).

    Google Scholar 

  3. H. Karian, Handbook of Polypropylene and Polypropylene Composites, Revised and Expanded (CRC, 2003).

    Book  Google Scholar 

  4. L. Hollaway, Handbook of Polymer Composites for Engineers (Elsevier, Cambridge, 1994).

    Book  Google Scholar 

  5. J. G. Drobny, Handbook of Thermoplastic Elastomers (William Andrew, Norwich, 2007).

    Google Scholar 

  6. W. Zuiderduin, C. Westzaan, J. Huetink, and R. Gaymans, Polymer 44, 261 (2003).

    Article  CAS  Google Scholar 

  7. K. Yang, Q. Yang, G. Li, Y. Sun, and D. Feng, Mater. Lett. 60, 805 (2006).

    Article  CAS  Google Scholar 

  8. C. G. Ma, Y. L. Mai, M. Z. Rong, W. H. Ruan, and M. Q. Zhang, Compos. Sci. Technol. 67, 2997 (2007).

    Article  CAS  Google Scholar 

  9. S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Compos. Part B: Eng. 39, 933 (2008).

    Article  Google Scholar 

  10. H. Hanim, R. Zurina, M. Ahmad Fuad, and A. Hassan, Malays. Polym. J. 3, 38 (2008).

    Google Scholar 

  11. E. T. Thostenson, C. Li, and T.-W. Chou, Compos. Sci. Technol. 65, 491 (2005).

    Article  CAS  Google Scholar 

  12. S. Sinha Ray and M. Okamoto, Prog. Polym. Sci. 28, 1539 (2003).

    Article  Google Scholar 

  13. W. Chow, Z. Mohd Ishak, J. Karger-Kocsis, A. Apostolov, and U. Ishiaku, Polymer 44, 7427 (2003).

    Article  CAS  Google Scholar 

  14. K. Shelesh-Nezhad, H. Orang, and M. Motallebi, J. Thermoplast. Compos. Mater. 26, 544 (2013).

    Article  CAS  Google Scholar 

  15. I. Kemal, A. Whittle, R. Burford, T. Vodenitcharova, and M. Hoffman, J. Appl. Polym. Sci. 127, 2339 (2013).

    Article  CAS  Google Scholar 

  16. D. Eiras and L. A. Pessan, Mater. Res. 12, 517 (2009).

    Article  CAS  Google Scholar 

  17. N. A. Rahman, A. Hassan, R. Yahya, R. Lafia-Araga, and P. Hornsby, J. Reinf. Plast. Compos. 31, 1247 (2012).

    Article  CAS  Google Scholar 

  18. C. Hopmann, W. Michaeli, and F. Puch, Polym. Compos. 33, 2228 (2012).

    Article  CAS  Google Scholar 

  19. N. A. Rahman, A. Hassan, R. Yahya, R. A. Lafia-Araga, and P. R. Hornsby, J. Reinf. Plast. Compos. 31, 269 (2012).

    Article  Google Scholar 

  20. T. Mohan and K. Kanny, J. Reinf. Plast. Compos. 30(2), 152 (2010).

    Article  Google Scholar 

  21. J. Thomason, M. Vlug, G. Schipper, and H. Krikor, Compos, Part A 27, 1075, (1996).

    Article  Google Scholar 

  22. P. Dave, D. Chundury, G. Baumer, and L. Overley, J. Vinyl. Addit. Techn. 2, 253 (1996).

    Article  CAS  Google Scholar 

  23. C.-M. Chan, J. Wu, J.-X. Li, and Y.-K. Cheung, Polymer 43, 2981 (2002).

    Article  CAS  Google Scholar 

  24. C. Chi-Ming, W. Jingshen, and L. Jian-Xiong, Group. 500, 414 (2002).

    Google Scholar 

  25. J. G. Gwon, S. Y. Lee, S. J. Chun, G. H. Doh, and J. H. Kim, Mater. Sci. Eng. A 41, 1491 (2010).

    Google Scholar 

  26. M. Avella, S. Cosco, M. Di Lorenzo, E. Di Pace, M. Errico, and G. Gentile, Eur. Polym. J. 42, 1548 (2006).

    Article  CAS  Google Scholar 

  27. H. U. Zaman, P. D Hun, R. A. Khan, and K.-B. Yoon, J. Thermoplast. Compos. Mater. 31(5), 323 (2012).

    CAS  Google Scholar 

  28. B. J. Ash, R. W. Siegel, and L. S. Schadler, Macromolecules 37, 1358 (2004).

    Article  CAS  Google Scholar 

  29. A. Hassan, N. A. Rahman, and R. Yahya, J. Reinf. Plast. Compos. 30(14), 1223 (2011).

    Article  CAS  Google Scholar 

  30. A. Z. Zakaria and K. Shelesh-Nezhad, Nanomater. Nanotechnol. 4, 17 (2014).

    Google Scholar 

  31. S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Compos. Part B 39, 933 (2008).

    Article  Google Scholar 

  32. C. Deshmane, Q. Yuan, and R. Misra, Mater. Sci. Eng. A 452, 592 (2007).

    Article  Google Scholar 

  33. I. Dubnikova, S. Berezina, and A. Antonov, J. Appl. Polym. Sci. 94, 1917 (2004).

    Article  CAS  Google Scholar 

  34. L. Sun, R. F. Gibson, F. Gordaninejad, and J. Suhr, Compos. Sci. Technol. 69, 2392 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Soudmand.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soudmand, B.H., Shelesh-Nezhad, K. Experimental investigation on the mechanical properties of Co-polypropylene/GF/CaCO3 hybrid nanocomposites. Polym. Sci. Ser. A 58, 454–463 (2016). https://doi.org/10.1134/S0965545X16030172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16030172

Keywords

Navigation