Skip to main content
Log in

An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We investigate the convergence of a forward–backward–forward proximal-type algorithm with inertial and memory effects when minimizing the sum of a nonsmooth function with a smooth one in the absence of convexity. The convergence is obtained provided an appropriate regularization of the objective satisfies the Kurdyka–Łojasiewicz inequality, which is for instance fulfilled for semi-algebraic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  2. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38(2), 431–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J. Control Optim. 38(4), 1102–1119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boţ, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal–dual splitting algorithm for solving monotone inclusion problems. arXiv:1402.5291 (2014)

  10. Boţ, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers; to appear in Minimax Theory and its Applications. arXiv:1404.4582 (2014)

  11. Boţ, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256(1), 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Cabot, A., Frankel, P.: Asymptotics for some proximal-like method involving inertia and memory aspects. Set-Valued Var. Anal. 19, 59–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maingé, P.-E.: Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 219, 223–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maingé, P.-E., Moudafi, A.: Convergence of new inertial proximal methods for DC programming. SIAM J. Optim. 19(1), 397–413 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 155, 447–454 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pesquet, J.-C., Pustelnik, N.: A parallel inertial proximal optimization method. Pac. J. Optim. 8(2), 273–306 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116(1–2), 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. Ser. A 137(1–2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. Ser. A 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward–backward algorithm for minimizing the sum of a differentiable function and a convex function. J. Optim. Theory Appl. 162(1), 107–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frankel, P., Garrigos, G., Peypouquet, J.: Splitting methods with variable metric for KL functions. J. Optim. Theory Appl. (2014). doi:10.1007/s10957-014-0642-3

  23. Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319–3363 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier (Grenoble) 48(3), 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. Les Équations aux Dérivées Partielles, Éditions du Centre National de la Recherche Scientifique Paris 87–89 (1963)

  26. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for non-convex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Boţ, R.I., Csetnek, E.R., László, S.C.: An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions. arXiv:1410.0641 (2014)

  28. Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20(2), 307–330 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Fundamental Principles of Mathematical Sciences, vol. 317. Springer, Berlin (1998)

    Google Scholar 

  31. Mordukhovich, B.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications. Springer, Berlin (2006)

    Google Scholar 

  32. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic, Dordrecht (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Ioan Boţ.

Additional information

Research partially supported by DFG (German Research Foundation), project BO 2516/4-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boţ, R.I., Csetnek, E.R. An Inertial Tseng’s Type Proximal Algorithm for Nonsmooth and Nonconvex Optimization Problems. J Optim Theory Appl 171, 600–616 (2016). https://doi.org/10.1007/s10957-015-0730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-015-0730-z

Keywords

Mathematics Subject Classification

Navigation