Skip to main content
Log in

On the convergence of the proximal algorithm for nonsmooth functions involving analytic features

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the convergence of the proximal algorithm applied to nonsmooth functions that satisfy the Łjasiewicz inequality around their generalized critical points. Typical examples of functions complying with these conditions are continuous semialgebraic or subanalytic functions. Following Łjasiewicz’s original idea, we prove that any bounded sequence generated by the proximal algorithm converges to some generalized critical point. We also obtain convergence rate results which are related to the flatness of the function by means of Łjasiewicz exponents. Apart from the sharp and elliptic cases which yield finite or geometric convergence, the decay estimates that are derived are of the type O(k s), where s ∈ (0, + ∞) depends on the flatness of the function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absil P.-A., Mahony R. and Andrews B. (2005). Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16: 531–547

    Article  MATH  MathSciNet  Google Scholar 

  2. Attouch H. and Soubeyran A. (2006). Inertia and reactivity in decision making as cognitive variational inequalities. J. Convex Anal. 13: 207–224

    MATH  MathSciNet  Google Scholar 

  3. Attouch, H., Soubeyran, A.: From procedural rationality to routines: a worthwhile to move approach of satisficing with not too much sacrificing. Submitted paper (2005)

  4. Attouch H. and Teboulle M. (2004). Regularized Lotka–Volterra Dynamical system as continuous proximal-like method in optimization. J. Optim. Theory Appl. 121: 541–580

    Article  MATH  MathSciNet  Google Scholar 

  5. Benedetti, R., Risler, J.-J.: Real Algebraic and Semialgebraic Sets. Hermann, Éditeurs des sciences et des Arts, Paris (1990)

  6. Bochnak J., Coste M. and Roy M.-F. (1998). Real Algebraic Geometry. Springer, Heidelberg

    MATH  Google Scholar 

  7. Bolte J., Daniilidis A. and Lewis A. (2007). The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAMJ. Optimization 17: 1205–1223

    Article  MATH  MathSciNet  Google Scholar 

  8. Bolte J., Daniilidis A. and Lewis A. (2006). The Morse-Sard theorem for non-differentiable subanalytic functions. J. Math. Anal. Appl. 321: 729–740

    Article  MATH  MathSciNet  Google Scholar 

  9. Clarke, F.H., Ledyaev, Yu., Stern, R.I., Wolenski, P.R.: Nonsmooth analysis and control theory. Graduate texts in Mathematics, vol. 178. Springer, New-York (1998)

  10. Combettes P. and Pennanen T. (2004). Proximal methods for cohypomonotone operators. SIAM J. Control Optim. 43: 731–742

    Article  MATH  MathSciNet  Google Scholar 

  11. Coste, M.: An introduction to o-minimal geometry. RAAG Notes, 81 p., Institut de Recherche Mathématiques de Rennes (1999)

  12. Miller C. and Dries L. (1996). Geometric categories and o-minimal structures. Duke Math. J. 84: 497–540

    Article  MATH  MathSciNet  Google Scholar 

  13. Goudou, X., Munier, J.: The heavy ball with friction method: the quasiconvex case. Submitted (2005)

  14. Haraux, A.: A hyperbolic variant of Simon’s convergence theorem. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, pp. 255-264. Dekker, New York (2001)

  15. Kaplan A. and Tichatschke R. (1998). Proximal point methods and nonconvex optimization. J. Glob. Optim. 13: 389–406

    Article  MATH  MathSciNet  Google Scholar 

  16. Kurdyka K. (1998). On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48: 769–783

    MATH  MathSciNet  Google Scholar 

  17. Kurdyka K. and Parusinski A. (1994). w f -stratification of subanalytic functions and the Łjasiewicz inequality. C. R. Acad. Paris 318: 129–133

    MATH  MathSciNet  Google Scholar 

  18. Lemaire, B.: The proximal algorithm. New methods in optimization and their industrial uses, Pau/Paris, pp. 73-87 (1987). Internat. Schriftenreihe Numer. Math., vol. 87. Birkhäuser, Basel (1989)

  19. Łjasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Ĺes Équations aux Dérivées Partielles, Editions du Centre National de la Recherche Scientifique, Paris, pp. 87–89 (1963)

  20. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. (French) Rev. Française Informat. Recherche Opérationnelle, vol. 4, Ser. R-3 154–158 (1970)

  21. Miettinen M., Mkel M.M. and Haslinger J. (1995). On numerical solution of hemivariational inequalities by nonsmooth optimization methods. J. Glob. Optim. 6: 401–425

    Article  MATH  MathSciNet  Google Scholar 

  22. Mifflin R. and Sagastizabal C. (2004). \({\mathcal{VU}}\) -smoothness and proximal point results for some nonconvex functionsOptim. Methods Softw. 19: 463–478

    Article  MATH  MathSciNet  Google Scholar 

  23. Mordukhovich, B.: Maximum principle in the problem of time optimal response with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976); translated from Prikl. Mat. Meh. 40, 1014–1023 (1976)

  24. Mordukhovich, B.: Variational analysis and generalized differentiation. Grundlehren der Mathematischen, Wissenschaften, vol. 330. Springer, Heidelberg (1998)

  25. Palis, J., De Melo, W.: Geometric theory of dynamical systems. An introduction (Translated from the Portuguese by A. K. Manning). Springer, New York (1982)

  26. Pennanen T. (2002). Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Math. Oper. Res. 27: 170–191

    Article  MATH  MathSciNet  Google Scholar 

  27. Rockafellar R.T. (1976). Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1: 97–116

    Article  MATH  MathSciNet  Google Scholar 

  28. Rockafellar, R.T., Wets, R.: Variational Analysis. Grundlehren der Mathematischen, Wissenschaften, vol. 317. Springer, Heidelberg (1998)

  29. Simon L. (1983). Asymptotics for a class of non-linear evolution equations, with applications to geometric problems. Ann. Math. 118: 525–571

    Article  Google Scholar 

  30. Spingarn J.E. (1981). Submonotone mappings and the proximal point algorithm. Numer. Funct. Anal. Optim. 4: 123–150

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedy Attouch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attouch, H., Bolte, J. On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116, 5–16 (2009). https://doi.org/10.1007/s10107-007-0133-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0133-5

Keywords

Mathematics Subject Classification (2000)

Navigation