Skip to main content
Log in

The Boltzmann Equation for Bose-Einstein Particles: Condensation in Finite Time

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The paper considers the problem of the Bose-Einstein condensation in finite time for isotropic distributional solutions of the spatially homogeneous Boltzmann equation for Bose-Einstein particles with the hard sphere model. We prove that if the initial datum of a solution is a function which is singular enough near the origin (the zero-point of particle energy) but still Lebesgue integrable (so that there is no condensation at the initial time), then the condensation continuously starts to occur from the initial time to every later time. The proof is based on a convex positivity of the cubic collision integral and some properties of a certain Lebesgue derivatives of distributional solutions at the origin. As applications we also study a special type of solutions and present a relation between the conservation of mass and the condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Arkeryd, L., Nouri, A.: Bose condensates in interaction with excitations: a kinetic model. Commun. Math. Phys. 310(3), 765–788 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Benedetto, D., Pulvirenti, M., Castella, F., Esposito, R.: On the weak-coupling limit for bosons and fermions. Math. Models Methods Appl. Sci. 15(12), 1811–1843 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  4. Erdös, L., Salmhofer, M., Yau, H.-T.: On the quantum Boltzmann equation. J. Stat. Phys. 116(1–4), 367–380 (2004)

    Article  ADS  MATH  Google Scholar 

  5. Escobedo, M., Mischler, S., Valle, M.A.: Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electron. J. Differ. Equ., Monograph 4, 1–85 (2003). Southwest Texas State University, San Marcos, TX

    MathSciNet  Google Scholar 

  6. Escobedo, M., Mischler, S., Velázquez, J.J.L.: On the fundamental solution of a linearized Uehling-Uhlenbeck equation. Arch. Ration. Mech. Anal. 186(2), 309–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Escobedo, M., Mischler, S., Velázquez, J.J.L.: Singular solutions for the Uehling-Uhlenbeck equation. Proc. R. Soc. Edinb. 138A, 67–107 (2008)

    Google Scholar 

  8. Escobedo, M., Velázquez, J.J.L.: Finite time blow-up for the bosonic Nordheim equation. arXiv:1206.5410v1 [math-ph] (2012)

  9. Josserand, C., Pomeau, Y., Rica, S.: Self-similar singularities in the kinetics of condensation. J. Low Temp. Phys. 145, 231–265 (2006)

    Article  ADS  Google Scholar 

  10. Lu, X.: A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior. J. Stat. Phys. 98, 1335–1394 (2000)

    Article  ADS  MATH  Google Scholar 

  11. Lu, X.: On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)

    Article  ADS  MATH  Google Scholar 

  12. Lu, X.: The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119, 1027–1067 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Markowich, P.A., Pareschi, L.: Fast conservative and entropic numerical methods for the boson Boltzmann equation. Numer. Math. 99, 509–532 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nordheim, L.W.: On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Proc. R. Soc. Lond. Ser. A 119, 689–698 (1928)

    Article  ADS  MATH  Google Scholar 

  15. Nouri, A.: Bose-Einstein condensates at very low temperatures: a mathematical result in the isotropic case. Bull. Inst. Math. Acad. Sin. 2(2), 649–666 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Semikov, D.V., Tkachev, I.I.: Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093–3097 (1995)

    Article  ADS  Google Scholar 

  17. Semikov, D.V., Tkachev, I.I.: Condensation of Bose in the kinetic regime. Phys. Rev. D 55, 489–502 (1997)

    Article  ADS  Google Scholar 

  18. Spohn, H.: Kinetics of the Bose-Einstein condensation. Physica D 239, 627–634 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Toscani, G.: Finite time blow up in Kaniadakis-Quarati model of Bose-Einstein particles. Commun. Partial Differ. Equ. 37(1), 77–87 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases, I. Phys. Rev. 43, 552–561 (1933)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am very grateful to the referees for their important suggestions on the revision of the paper. This work was supported by National Natural Science Foundation of China, Grant No. 11171173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Lu.

Appendix

Appendix

1.1 5.1 Equivalence of Distributional Solutions

Here we shall prove that the two definitions in [11] and in Definition 1.1 are equivalent. Since our basic results on existence, moment estimates, long time behavior, etc. were proven only for distributional solutions defined in [11], this clarification is necessary.

Let \(W^{\sharp}:\mathbb{R}_{\ge0}^{3}\to \mathbb{R}_{\ge0}\) be defined by

(5.1)
(5.2)

where \(\sigma\in{{\mathbb{S}}^{2}}\),

(5.3)

Lemma 5.1

Let W and W be defined in (1.12)(1.13) and (5.1)(5.3) respectively. Then

$$ W^{\sharp}\bigl(r, r', r_*'\bigr)+W^{\sharp} \bigl(r,r_*',r'\bigr)=(2\pi)^2 W \bigl(r^2/2, r^{\prime\,2}/2,{r_*'}^2/2 \bigr)\quad\forall \bigl(r,r',r_*'\bigr) \in \mathbb{R}_{\ge0}^3. $$
(5.4)

Lemma 5.2

If \(\varPsi: \mathbb{R}^{3}_{\ge0}\to \mathbb{R}\) is nonnegative measurable or satisfies some integrability conditions so that the following integrals make sense, then

(5.5)

for all v∈ℝ3∖{0}, where \(\epsilon=\frac{1}{2}|\mathbf{v}|^{2}\).

Proof of Lemmas 5.1–5.2

Let

$$V\bigl(r, r', r_*'\bigr)=\frac{2\pi}{r_*'} \int _{{{\mathbb{S}}^2}}\frac{1}{|r\sigma-r'\sigma'|}\mathbf{1}_{\{ r_*'>r|\sigma\cdot\xi |\}}\mathrm{d} \sigma' ,\quad \bigl(r,r',r_*'\bigr)\in \mathbb{R}_{>0}^3 $$

with ξ defined in (5.3). We show that \(V(r,r',r_{*}')\) equals to both two sides of (5.4) in \(\mathbb{R}_{>0}^{3}\). First of all by coordinate rotation on the sphere we have \(|r\sigma-r'\sigma'|=\sqrt{r^{2}+{r'}^{2}-2rr't}\), \(|\sigma\cdot\xi|=\frac{|r-r't|}{\sqrt{r^{2}+{r'}^{2}-2rr't}}\) with t∈(−1,1) and so \(W^{\sharp}(r,r_{*}',r_{*}'),V(r,r_{*}',r_{*}')\) are independent of \(\sigma\in{{\mathbb{S}}^{2}}\), and

$$ V\bigl(r,r', r_*' \bigr)=\frac{(2\pi)^2}{r_*'}\int _{-1}^{1} \mathbf{1}_{\bigl\{r_*'> \frac{r|r-r't|}{\sqrt{r^2+{r'}^2-2rr't}}\bigr\}} \frac{\mathrm{d}t}{\sqrt{r^2+{r'}^2-2rr't}}. $$
(5.6)

Since the set \(\{ t\in(-1,1) \mid r_{*}'=\frac{r|r-r't|}{\sqrt{r^{2}+{r'}^{2}-2rr't}}\}\) has measure zero, \(W^{\sharp}(r,r',r_{*}'), V(r,r',r_{*}')\) are continuous in \(\mathbb{R}_{>0}^{3}\). To prove

$$ V\bigl(r,r',r_*'\bigr)=(2\pi)^2 W \bigl(r^2/2, r^{\prime\,2}/2,{r_*'}^2/2 \bigr)\quad\forall \bigl(r,r',r_*'\bigr) \in \mathbb{R}_{>0}^3 $$
(5.7)

we observe that for any t∈(−1,1),

$$ r_*'> \frac{r|r-r't|}{\sqrt{r^2+{r'}^2-2rr't}}\quad\Longleftrightarrow \quad {r_*'}^2\bigl(r^{\prime\,2}+{r_*'}^2-r^2 \bigr)>\bigl({r_*'}^2 -r^2+rr't \bigr)^2 . $$
(5.8)

If \({r'}^{2}+{r_{*}'}^{2}-r^{2}\le0\), then (5.8) and (5.6) imply \(V(r,r',r_{*}')=0\) and by definition of W we also have \(W(r^{2}/2, r^{\prime\,2}/2,{r_{*}'}^{2}/2)=0\). Suppose \({r'}^{2}+{r_{*}'}^{2}-r^{2}>0\) and let \(r_{*}=\sqrt{r^{\prime\,2}+{r_{*}'}^{2}-r^{2} }\). By changing variable \(s=\sqrt{r^{2}+{r'}^{2}-2rr't} \) we compute

where the third equality follows from the identity \((r'+r)(r'-r)= (r_{*}+r_{*}')(r_{*}-r_{*}')\). This proves (5.7). Next we prove that

$$ V\bigl(r,r',r_*'\bigr)=W^{\sharp} \bigl(r,r',r_*'\bigr)+W^{\sharp } \bigl(r,r_*',r'\bigr)\quad \forall \bigl(r,r',r_*'\bigr) \in\mathbb{R}_{>0}^3. $$
(5.9)

To do this, we have to go back to derivations in [10, 11] there we used two formulas: The first one is the Carleman’s representation:

$$ \int_{{{{\mathbb{R}}^3}\times{\mathbb{S}}^2}}\big|(\mathbf{v}-\mathbf{v}_*)\cdot\omega \big|\varPhi\bigl({\mathbf{v}'},\mathbf{v}'_*\bigr)\mathrm{d}\omega\mathrm{d} \mathbf{v}_*= 2\int_{{\mathbb{{R}}^3}} \frac{\mathrm{d}\mathbf{x}}{|\mathbf{x}|}\int _{\mathbb{R}^{2} (\mathbf{x})} \varPhi(\mathbf{v}-\mathbf{x},\mathbf{v}-\mathbf{y})\mathrm{d}^{\bot}\mathbf{y} $$
(5.10)

where ℝ2(x)={y∈ℝ3|yx} for x0, and d y is the Lebesgue measure on ℝ2(x). The second one is

$$ \int_{{{\mathbb{R}}^3}}\mathrm{d} \mathbf{x} \int_{\mathbb{R}^2(\mathbf{x})} \varPhi(\mathbf{x},\mathbf{y}) \mathrm{d}^{\bot}\mathbf{y} =\int_{{\mathbb{{R}}^3}} \mathrm{d} \mathbf{y}\int_{\mathbb{R}^2(\mathbf{y})}\frac{|\mathbf{x}|}{|\mathbf{y}|}\varPhi(\mathbf{x}, \mathbf{y})\mathrm{d}^{\bot}\mathbf{x}. $$
(5.11)

Here Φ is nonnegative and continuous in (ℝ3∖{0})×(ℝ3∖{0}). Now fix any r>0, let \(\mathbf{v}=r\sigma,\sigma\in{{\mathbb{S}}^{2}}\), and take any \(0\le\psi\in C(\mathbb{R}_{\ge0}^{2})\). Using (5.10), (5.11), and the identity

$$\frac{1}{|\mathbf{x}|}=\frac{|\mathbf{v}-\mathbf{y}|}{|\mathbf{x}||\mathbf{v}-\mathbf{y}|+ |\mathbf{y}||\mathbf{v}-\mathbf{x}|} +\frac{|\mathbf{y}|}{|\mathbf{x}|}\cdot \frac{|\mathbf{v}-\mathbf{x}|}{|\mathbf{x}||\mathbf{v}-\mathbf{y}|+|\mathbf{y}||\mathbf{v}-\mathbf{x}|} ,\quad\mathbf{x}\in\mathbb{R}^3\setminus\{0\},\ \mathbf{y}\in\mathbb{R}^2(x) $$

we compute (see [11] for details)

(5.12)

Similarly using (5.10) and recalling X=|rσ′| we also have

(5.13)

Since \(W^{\sharp}(r,r',r_{*}')+W^{\sharp}(r,r_{*}',r') \) and \(V(r,r',r_{*}')\) are both continuous in \((r',r_{*}')\in\mathbb{R}_{>0}^{2}\), the equality (5.9) follows from comparing (5.12) and (5.13).

Thus (5.4) holds for all \((r,r',r_{*}')\in\mathbb{R}_{>0}^{3}\). On the other hand, by definition of W and W , it is easily checked that (5.4) holds also for all \((r,r',r_{*}')\in\mathbb{R}_{\ge0}^{3}\setminus \mathbb{R}_{>0}^{3}\).

Now let Ψ be the function in Lemma 5.2. Applying (5.13) and (5.7) with change of variables \(r'=\sqrt{2\epsilon'}, r_{*}'=\sqrt{2\epsilon_{*}'}\) and denoting \(\epsilon=\frac{1}{2}r^{2}=\frac{1}{2}|\mathbf{v}|^{2}\) with v∈ℝ3∖{0} we have

This completes the proof. □

Let \(J_{B}[\varphi](\rho,\rho_{*}), K_{B}[\varphi](r,r',r_{*}')\) be defined as in pp. 1605–1609 of [11] for the hard sphere model B(vv ,ω)=λ|(vv )⋅ω|(λ>0), i.e.

$$ J_B[\varphi](\rho,\rho_*)=\frac{\lambda}{(4\pi)^2} \int _{{{{\mathbb{S}}^2}\times{{\mathbb{S}}^2}\times{\mathbb{{S}}^2}}} \bigl[\varphi\bigl(\big|\mathbf{v}'\big|^2 \bigr)- \varphi\bigl(|\mathbf{v}|^2\bigr) \bigr]\big|(\mathbf{v}-\mathbf{v}_*)\cdot \omega\big|\mathrm{d}\omega\mathrm{d}\sigma_*\mathrm{d}\sigma $$
(5.14)

with v=ρσ,v =ρ σ ;

$$ K_B[\varphi]\bigl(r,r',r_*'\bigr)= \frac{4\lambda}{(4\pi )^2}W^{\sharp}\bigl(r,r',r_*' \bigr) \Delta\varphi\bigl(r^2, r^{\prime\,2},{r_*'}^2 \bigr) $$
(5.15)

where Δφ(x,y,z) are defined in (1.11), i.e.

$$\Delta\varphi(x,y,z)=\varphi(x)+\varphi(x_*)-\varphi(y)-\varphi (z), \quad x_* = (y+z-x)_{+}. $$

Let \(F\in\mathcal{B}_{1}^{+}(\mathbb{R}_{\ge0}), \bar{F}\in\mathcal{B}_{2}^{+}(\mathbb{R}_{\ge0})\) be defined through the following relation (each one determines the other according to Riesz’s representation theorem):

$$ 4\pi\sqrt{2}\int_{\mathbb{R}_{\ge0}}\psi(\epsilon)\mathrm{d}F(\epsilon)= \int_{\mathbb{R}_{\ge0}}\psi\bigl(r^2/2\bigr)\mathrm{d}\bar {F}(r) \quad\forall \psi\in C_{-1}(\mathbb{R}_{\ge0}) $$
(5.16)

where C −1(ℝ≥0)={ψC(ℝ≥0)|sup ϵ≥0(1+ϵ)−1|ψ(ϵ)|<∞}. In the special case that F and \(\bar{F}\) are given by \(\mathrm{d}F(\epsilon)= f(\epsilon)\sqrt{\epsilon} \mathrm{d}\epsilon\), \(\mathrm{d}\bar{F}(r)=4\pi f(r^{2}/2) r^{2}\mathrm{d} r\), the above relation is just the change of variable: \(4\pi\sqrt{2}\psi(\epsilon)\mathrm{d}F(\epsilon)=\psi(r^{2}/2)\mathrm{d}\bar{F}(r)\).

Lemma 5.3

Given any \(\varphi\in C_{b}^{2}(\mathbb{R}_{\ge0})\). Let B(vv ,ω)=λ|(vv )⋅ω| (λ>0), \(\mathcal{J}[\varphi],\mathcal{K}[\varphi]\) and J B [φ],K B [φ] be defined by (1.9), (1.10) and (5.14), (5.15) respectively. Then for all \(\epsilon, \epsilon',\epsilon_{*}'\in \mathbb{R}_{\ge0}\)

$$ 4\pi\sqrt{2}\lambda\mathcal{J}[\varphi]\bigl(\epsilon', \epsilon_*'\bigr)=J_B\bigl[\varphi(\cdot/2)\bigr]\bigl( \sqrt {2\epsilon '},\sqrt{2\epsilon_*'}\, \bigr)+J_B\bigl[\varphi(\cdot/2)\bigr]\bigl(\sqrt{2 \epsilon_*'}, \sqrt{2\epsilon'}\,\bigr) , $$
(5.17)
(5.18)

Consequently if \(F\in\mathcal{B}_{1}^{+}(\mathbb{R}_{\ge0}), \bar{F}\in\mathcal{B}_{2}^{+}(\mathbb{R}_{\ge0})\) satisfy (5.16), then

$$ (4\pi)^3\sqrt{2}\lambda\int_{\mathbb{R}_{\ge0}^2}\mathcal{J}[ \varphi]\mathrm{d}^2F=\int_{\mathbb{R}_{\ge0}^2}J_B \bigl[\varphi(\cdot /2)\bigr]\mathrm{d}^2\bar{F}, $$
(5.19)
$$ (4\pi)^3\sqrt{2}\lambda\int_{\mathbb{R}_{\ge 0}^3}\mathcal{K}[ \varphi ]\mathrm{d}^3F=\int_{\mathbb{R}_{\ge0}^3}K_B \bigl[\varphi(\cdot/2)\bigr]\mathrm{d}^3{\bar{F}}. $$
(5.20)

Here as before \((\mathrm{d}^{2}\bar{F})(\rho, \rho)=\mathrm{d}\bar{F}(\rho)\mathrm{d}\bar{F}(\rho_{*}), (\mathrm{d}^{3}\bar{F})(r,r',r_{*}')=\mathrm{d}\bar {F}(r')\mathrm{d}\bar{F}(r_{*}')\mathrm{d}\bar{F}(r)\).

Proof

By symmetry \(\Delta\varphi(r^{2},{r'}^{2},{r_{*}'}^{2} )=\Delta \varphi(r^{2},{r_{*}'}^{2},{r'}^{2})\) and (5.4) we have

This proves (5.18). To prove (5.17), we first use (5.14), (1.11) to get

(5.21)

with v=ρσ,v =ρ σ . Here we used \(|\mathbf{v}'|^{2}+|\mathbf{v}_{*}'|^{2}=|\mathbf{v}|^{2}+|\mathbf{v}_{*}|^{2}\) so that

$$\varphi\bigl(\big|\mathbf{v}'\big|^2/2\bigr)+\varphi\bigl(\big|\mathbf{v}_*'\big|^2/2\bigr) -\varphi\bigl(|\mathbf{v}|^2/2 \bigr)-\varphi\bigl(|\mathbf{v}_*|^2/2\bigr) =\Delta\varphi\bigl(\big|\mathbf{v}'\big|^2/2, |\mathbf{v}|^2/2,|\mathbf{v}_*|^2/2\bigr). $$

Let \(\psi\in C_{c}(\mathbb{R}_{\ge0}^{2})\). By change of variables \(\epsilon'=\frac{1}{2}\rho^{2}\), \(\epsilon_{*}'=\frac{1}{2}\rho_{*}^{2}\) and using the fact that \((\mathbf{v},\mathbf{v}_{*})\to(\mathbf{v}',\mathbf{v}_{*}')\) (for fixed ω) is an orthogonal transform (see (1.2), (1.3)) and finally using (5.5) we compute from (5.21),

Since \(J_{B}[\varphi](\rho,\rho_{*}), \mathcal{J}[\varphi](\epsilon ',\epsilon _{*}')\) are both continuous on \(\mathbb{R}_{\ge0}^{2}\), it follows that (5.17) holds true.

Next from the estimates in page 1610 of [11] and (2.2), (2.3) above we see that the integrals in (5.19)–(5.20) are absolutely convergent. Therefore applying Fubini theorem and (5.16)–(5.18) we obtain

 □

Definition 5.1

[11]

Let \(\{ \bar{F}_{t}\}_{t\ge0}\subset\mathcal{B}_{2}^{+}(\mathbb{R}_{\ge0})\). We say that \(\{\bar{F}_{t}\}_{t\ge0}\), or simply \(\bar{F}_{t}\), is an isotropic distributional solution of Eq. (1.1) for the hard sphere model (1.5) with the initial datum \({\bar{F}}_{0}\) if \(\bar{F}_{t}\) satisfies the following (i)–(iii):

  1. (i)

    \(\sup_{t\in[0,T]}\int_{\mathbb{R}_{\ge0}}(1+r^{2})\mathrm{d}\bar{F}_{t}(r)<\infty\) ∀0<T<∞,

  2. (ii)

    the function \(t\mapsto\int_{\mathbb{R}_{\ge0}}\varphi (r^{2})\mathrm{d}\bar{F}_{t}(r)\) belongs to C 1([0,∞)) for all \(\varphi\in C^{2}_{b}(\mathbb{R}_{\ge0})\), and

  3. (iii)
    $$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}_{\ge0}}\varphi\bigl(r^2 \bigr)\mathrm{d}\bar{F}_t(r)=\int_{\mathbb{R}_{\ge0}^2}J_B[ \varphi]\mathrm{d}^2\bar {F}_t+\int_{\mathbb{R}_{\ge0}^3}K_B[ \varphi]\mathrm{d}^3\bar {F}_t,\quad t\in[0,\infty) $$

    for all \(\varphi\in C^{2}_{b}(\mathbb{R}_{\ge0})\).

Proposition 5.1

Let \(F_{t}\in\mathcal{B}^{+}_{1}(\mathbb{R}_{\ge0})\) and \(\bar{F}_{t}\in\mathcal{B}^{+}_{2}(\mathbb{R}_{\ge0})\) satisfy the relation (5.16) for every t∈[0,∞). Then F t is a distributional solution of Eq. (1.6) in terms of Definition 1.1, if and only if \(\bar{F}_{t}\) is an isotropic distributional solution of Eq. (1.1) in terms of Definition 5.1.

Proof

Recall \(B(\mathbf{v}-\mathbf{v}_{*},\omega)=\frac{1}{(4\pi )^{2}}|\langle\mathbf{v}-\mathbf{v}_{*},\omega\rangle|\), i.e. \(\lambda=\frac {1}{(4\pi)^{2}}\). By assumption and (5.19)–(5.20) we have

for all t∈[0,∞) and all \(\varphi\in C^{2}_{b}(\mathbb{R}_{\ge 0})\). These lead to the conclusion of the proposition. □

1.2 5.2 Integral Identities

Proposition 5.2

Let \(\varphi\in C_{b}^{1,1}(\mathbb{R}_{\ge0})\) be a convex function satisfying lim x→∞ φ(x)=0. Then

$$ \int_{0<y<z}\frac{1}{yz}\bigl[\varphi(z+y)+\varphi (z-y)-2\varphi(z)\bigr] \mathrm{d}y\mathrm{d}z=\frac{\pi^2}{12}\varphi(0) $$
(5.22)
$$ \int_{0<x<y<z}\frac{\sqrt{x}}{(xyz)^{7/6}}\bigl[\varphi (z+y-x)+\varphi (z+x-y)-2\varphi(z)\bigr] \mathrm{d}x\mathrm{d}y\mathrm{d}z=B_1 \varphi(0) $$
(5.23)
(5.24)

where 0<B 1,B 2<∞ are universal constants:

Proof

First of all the three integrals are well-defined since their integrands are nonnegative due to the convexity of φ. For instance, for the third integral, according to (2.10) and renaming x,y,z as z,x,y we have, for all 0<x<y<z<x+y,

(5.25)

By assumption lim x→∞ φ(x)=0 and the convexity of φ we have \(0\le-\varphi'(x)\le2\frac{\varphi(x/2)-\varphi(x)}{x}\) for all x>0 and so lim x→∞ ′(x)=0 hence \(\int_{0}^{\infty }x\varphi''(x)\mathrm{d}x=\varphi(0)\).

Let I 0,I 1,I 2 denote the left hand sides of (5.22), (5.23), (5.24) respectively. Using (2.8), (2.9) with x=0 and changing variable yzy we compute

and, for 0<y, s,t<1,

$$\int_{0}^{\infty} z \varphi'' \bigl(z\bigl(1+(s-t)y\bigr)\bigr)\mathrm{d}z=\frac{1}{[1+(s-t)y]^2} \int _{0}^{\infty} z \varphi''(z) \mathrm{d}z=\frac{1}{[1+(s-t)y]^2}\varphi(0). $$

Thus

$$I_0= \varphi(0)\int_{0}^{1}\!\!\int_{0}^1\!\!\int_{0}^1 \frac{y\mathrm{d}y\mathrm{d}s\mathrm{d}t}{[1+(s-t)y]^2}=-\varphi(0)\int_{0}^1 \frac{1}{y}\log\bigl( 1-y^2\bigr)\mathrm{d}y= \frac {\pi^2}{12}\varphi(0) . $$

Similarly using (2.8), (2.9) and changing variable (x,y)→(zx,zy) we have

and using (5.25) and changing variable (x,y)→(zx,zy)

 □

Remark 5.1

(1) Rough estimate gives 0<B 1<3, 0<B 2<5.

(2) From the proof of (5.22)–(5.24) one sees that (5.22)–(5.24) still hold true if the convexity assumption on φ is replaced by lim x→∞ ′(x)=0 and \(\int_{0}^{\infty }x|\varphi ''(x)|\mathrm{d}x<\infty\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X. The Boltzmann Equation for Bose-Einstein Particles: Condensation in Finite Time. J Stat Phys 150, 1138–1176 (2013). https://doi.org/10.1007/s10955-013-0725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0725-9

Keywords

Navigation