Skip to main content
Log in

Bose Condensates in Interaction with Excitations: A Kinetic Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper deals with mathematical questions for Bose gases below the temperature T BEC where Bose-Einstein condensation sets in. The model considered is of two-component type, consisting of a kinetic equation for the distribution function of a gas of (quasi-)particles interacting with a Bose condensate, which is described by a Gross-Pitaevskii equation. Existence results and moment estimates are proved in the space-homogeneous, isotropic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetto D., Castella F., Esposito R., Pulvirenti M.: Some considerations on the derivation of the nonlinear quantum Boltzmann equation II. J. Stat. Phys. 124, 951–966 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Eckern U.: Relaxation processes in a condensate Bose gas. J. Low Temp. Phys. 54, 333–359 (1984)

    Article  ADS  Google Scholar 

  3. Escobedo, M., Mischler, S., Valle, M.: Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electronic J. Diff. Eqns., Monograph 04 (2003)

  4. Escobedo M., Pezzotti F., Valle M.: Analytical approach to relaxation dynamics of condensed Bose gases. Ann. Phys. 326, 808–827 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Imamovic-Tomasovic, M., Kadanoff-Baym, L.: Kinetic theory for a trapped Bose condensate gas. Thesis. Univ. Toronto, 2001

  6. Imamovic-Tomasovic M., Griffin A.: Quasi-particle kinetic equation in a trapped Bose gas at low temperature. J. Low Temp. Phys. 122, 617–655 (2001)

    Article  Google Scholar 

  7. Hohenberg P., Martin P.: Microscopic theory of superfluid helium. Ann. Phys. 34, 291–359 (1965)

    Article  ADS  Google Scholar 

  8. Khalatnikov I.M.: Theory of superfluidity (in Russian). Moskva, Nauka (1971)

    Google Scholar 

  9. Kirkpatrick T.R., Dorfman J.R.: Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58, 301–331 (1985)

    Article  ADS  Google Scholar 

  10. Kane J., Kadanoff L.: Green’s functions and superfluid hydrodynamics. J. Math. Phys. 6, 1902–1912 (1965)

    Article  ADS  Google Scholar 

  11. Nouri A.: Bose-Einstein condensates at very low temperatures. A mathematical result in the isotropic case. Bull. Inst. Math. Acad. Sin. 2, 649–666 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Pitaevski L., Stringari S.: Bose-Einstein condensation. Oxford, Oxford Univ. Press (2003)

    Google Scholar 

  13. Semikoz D., Tkachev J.: Condensation of bosons in the kinetic regime. Phys. Rev. D 55, 489–502 (1997)

    Article  Google Scholar 

  14. Spohn H.: Kinetic equations for quantum many-particle systems, Modern encyclopedia of mathematical physics. Berlin-Heidelberg-New York, Springer (2007)

    Google Scholar 

  15. Spohn H.: Kinetics of the Bose-Einstein condensation. Physica D 239, 627–634 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Zaremba E., Nikuni T., Griffin A.: Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116, 277–345 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Arkeryd.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkeryd, L., Nouri, A. Bose Condensates in Interaction with Excitations: A Kinetic Model. Commun. Math. Phys. 310, 765–788 (2012). https://doi.org/10.1007/s00220-012-1415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1415-1

Keywords

Navigation