Skip to main content
Log in

Fast conservative and entropic numerical methods for the Boson Boltzmann equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

In this paper we derive accurate numerical methods for the quantum Boltzmann equation for a gas of interacting bosons. The schemes preserve the main physical features of the continuous problem, namely conservation of mass and energy, the entropy inequality and generalized Bose-Einstein distributions as steady states. These properties are essential in order to develop schemes that are able to capture the energy concentration behavior of bosons. In addition we develop fast algorithms for the numerical evaluation of the resulting quadrature formulas which allow the final schemes to be computed only in O(N2 log 2N) operations instead of O(N3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bose, S.N.: Plancks Gesetz and Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)

    Google Scholar 

  2. Buet, C., Cordier, S., Degond, P., Lemou, M.: Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck equation. J. Comp. Phys. 133, 310–322 (1997)

    Article  Google Scholar 

  3. Davis, P.J., Rabinowitz, P.: Methods of numerical integration. Academic Press, 1975

  4. Einstein, A.: Quantentheorie des einatomingen idealen gases. Stiz. Presussische Akademie der Wissenshaften Phys-math. Klasse, Sitzungsberichte, 23, 1–14 (1925)

    Google Scholar 

  5. Einstein, A.: Zur quantentheorie des idealen gases. Stiz. Presussische Akademie der Wissenshaften Phys-math. Klasse, Sitzungsberichte, 23, 18–25 (1925)

    Google Scholar 

  6. Escobedo, M., Mischler, S., Valle, M.A.: Homogeneous Boltzmann equation for quantum and relativistic particles. Electron. J. Diff. Eqns. Monograph 04, 85 (2003)

    Google Scholar 

  7. Escobedo, M., Mischler, S.: On a quantum Boltzmann equation for a gas of photons. J. Math. Pures Appl. 9(80), 471–515 (2001)

    Google Scholar 

  8. Lemou, M.: Multipole expansions for the Fokker-Planck-Landau operator. Numerische Mathematik, 78, 597–618 (1998)

    Google Scholar 

  9. Luiten, O.J., Reynolds, M.W., Walraven, J.T.M.: Kinetic theory of evaporative cooling. Phys. Rev. A 53, 381–389 (1996)

    Article  Google Scholar 

  10. Lu, X.: On spatially homogeneous solutions of a modified Boltzmann equation for Fermi-Dirac particles. J. Statist. Phys. 105, 353–388 (2001)

    Article  Google Scholar 

  11. Lu, X.: A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior. J. Statist. Phys. 98, 1335–1394 (2000)

    Article  Google Scholar 

  12. Pareschi, L.: Computational methods and fast algorithms for Boltzmann equations. Lecture Notes on the discretization of the Boltzmann equation, Chapter 7, Series on Advances in Mathematics for Applied Sciences, Vol. 63, World Scientific, 2003

  13. Pareschi, L., Jaksch, D., Markowich, P., Wenin, M., Zoller, P.: Increasing phase-space density by varying the trap potential in Bose-Einstein condensation. Preprint, 2004

  14. Pareschi, L., Russo, G., Toscani, G.: Fast spectral methods for the Fokker-Planck-Landau collision operator. J. Comp. Phys. 165, 1–21 (2000)

    Article  Google Scholar 

  15. Pareschi, L., Toscani, G., Villani, C.: Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit. Numerische Mathematik 93, 527–548 (2003)

    Article  Google Scholar 

  16. Semikoz, D.V., Tkachev, I.I.: Kinetics of Bose condensation. Physical Review Letters 74, 3093–3097 (1995)

    Article  Google Scholar 

  17. Semikoz, D.V., Tkachev, I.I.: Condensation of bosons in the kinetic regime. Physical Review D 55, 489–502 (1997)

    Article  Google Scholar 

  18. Gardiner, C.W., Jaksch, D., Zoller, P.: Quantum kinetic theory II. Phys. Rev. A 56, 575 (1997)

    Article  Google Scholar 

  19. Gardiner, C.W., Zoller, P.: Quantum kinetic theory. Phys. Rev. A 55, 2902 (1997)

    Article  Google Scholar 

  20. Gardiner, C.W., Zoller, P.: Quantum kinetic theory III. Phys. Rev. A 58, 536 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Pareschi.

Additional information

Mathematics Subject Classification (2000):82C10, 76P05, 65D32, 65T50

This work was supported by the WITTGENSTEIN AWARD 2000 of Peter Markowich, financed by the Austrian Research Fund FWF and by the European network HYKE, funded by the EC as contract HPRN-CT-2002-00282.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markowich, P., Pareschi, L. Fast conservative and entropic numerical methods for the Boson Boltzmann equation. Numer. Math. 99, 509–532 (2005). https://doi.org/10.1007/s00211-004-0570-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0570-5

Keywords

Navigation