Skip to main content

Advertisement

Log in

The Boltzmann Equation for Bose–Einstein Particles: Velocity Concentration and Convergence to Equilibrium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Long time behavior of solutions of the spatially homogeneous Boltzmann equation for Bose–Einstein particles is studied for hard potentials with certain cutoffs and for the hard sphere model. It is proved that in the cutoff case solutions as time \(t\rightarrow\infty\) converge to the Bose–Einstein distribution in L1 topology with the weighted measure \((\varrho +|v|^2)dv\), where \(\varrho=1\) for temperature \(T\geq T_c\) and \(\varrho=0\) for T<T c . In particular this implies that if T<T c then the solutions in the velocity regions \(\{v\in{\bf R}^3|\,\,|v|\leq \delta (t)\}\) (with \(\delta(t)\rightarrow 0\)) converge to a unique Dirac delta function (velocity concentration). All these convergence are uniform with respect to the cutoff constants. For the hard sphere model, these results hold also for weak or distributional solutions. Our methods are based on entropy inequalities and an observation that the convergence to Bose–Einstein distributions can be reduced to the convergence to Maxwell distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Ball F. Murat (1989) ArticleTitleRemarks on Chacon’s biting lemma Proc. Am. Math. Soc. 107 IssueID3 655–663

    Google Scholar 

  2. F. Bouchut L. Desvillettes (1998) ArticleTitleA proof of the smoothing properties of the positive part of Boltzmann’s kernel Rev. Mat. Iberoamericana 14 47–61

    Google Scholar 

  3. R. E. Caflisch C. D. Levermore (1986) ArticleTitleEquilibrium for radiation in a homogeneous plasma Phys. Fluids 29 748–752 Occurrence Handle10.1063/1.865928

    Article  Google Scholar 

  4. E. A. Carlen M. C. Carvalho (1992) ArticleTitleStrict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation J. Stat. Phys. 67 575–608 Occurrence Handle10.1007/BF01049721

    Article  Google Scholar 

  5. E.A. Carlen M.C. Carvalho (1994) ArticleTitleEntropy production estimates for Boltzmann equations with physically realistic collision kernels J. Stat. Phys. 74 743–782

    Google Scholar 

  6. C. Cercignani (1988) The Boltzmann Equation and its Applications Springer-Verlag New York

    Google Scholar 

  7. C. Cercignani R. Illner M. Pulvirenti (1994) The Mathematical Theory of Dilute Gases Springer-Verlag New York

    Google Scholar 

  8. C. Cercignani (1982) ArticleTitleH-theorem and trend to equilibrium in the kinetic theory of gases Arch. Mech. 34 231–241

    Google Scholar 

  9. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, 1970).

  10. L. Desvillettes (1989) ArticleTitleEntropy dissipation rate and convergence in kinetic equations Commun. Math. Phys. 123 687–702 Occurrence Handle10.1007/BF01218592

    Article  Google Scholar 

  11. M. Escobedo M. A. Herrero J. J. L. Velazquez (1998) ArticleTitleA nonlinear Fokker–Planck equation modelling the approach to thermal equilibrium in a homogeneous plasma Trans. Am. Math. Soc. 350 3837–3901 Occurrence Handle10.1090/S0002-9947-98-02279-X

    Article  Google Scholar 

  12. M. Escobedo S. Mischler (2001) ArticleTitleOn a quantum Boltzmann equation for a gas of photons J. Math. Pures Appl. 80 IssueID9 471–515 Occurrence Handle10.1016/S0021-7824(00)01201-0

    Article  Google Scholar 

  13. M. Escobedo, Boltzmann equation for quantum particles and Fokker Planck approximation, Elliptic and Parabolic Problems (Rolduc/Gaeta, 2001), (World Sci. Publishing, River Edge, NJ, 2002), pp. 75–87.

  14. M. Escobedo S. Mischler M.A. Valle (2003) Homogeneous Boltzmann equation in quantum relativistic kinetic theory, Electronic Journal of Differential Equations Monograph Southwest Texas State University San Marcos, TX

    Google Scholar 

  15. M. Escobedo S. Mischler J. J. L. Velazquez (2004) ArticleTitleAsymptotic description of Dirac mass formation in kinetic equations for quantum particles J. Differ. Equ. 202 208–230 Occurrence Handle10.1016/j.jde.2004.03.031 Occurrence HandleMR2068439

    Article  MathSciNet  Google Scholar 

  16. K. Huang (1963) Statistical Mechanics John Wiley & Sons Inc. New York, London

    Google Scholar 

  17. L. D.Landau, E. M. Lifshitz, Statistical Physics, 3rd ed. Part 1 (Pergamon Press, 1980).

  18. P. L. Lions (1994) ArticleTitleCompactness in Boltzmann’s equation via Fourier integral operators and applications, I J. Math. Kyoto Univ. 34 391–427

    Google Scholar 

  19. X. G. Lu (1998) ArticleTitleA direct method for the regularity of the gain term in the Boltzmann equation J. Math. Anal. Appl. 228 409–435 Occurrence Handle10.1006/jmaa.1998.6141

    Article  Google Scholar 

  20. X. G. Lu (2000) ArticleTitleA modified Boltzmann equation for Bose–Einstein particles: isotropic solutions and long-time behavior J. Stat. Phys. 98 1335–1394 Occurrence Handle10.1023/A:1018628031233

    Article  Google Scholar 

  21. X. G. Lu (2001) ArticleTitleOn spatially homogeneous solutions of a modified Boltzmann equation for Fermi–Dirac particles J. Stat. Phys. 105 353–388 Occurrence Handle10.1023/A:1012282516668

    Article  Google Scholar 

  22. X. G. Lu (2004) ArticleTitleOn isotropic distributional solutions to the Boltzmann equation for Bose–Einstein particles J. Stat. Phys. 116 1597–1649 Occurrence Handle10.1023/B:JOSS.0000041750.11320.9c Occurrence HandleMR2096049

    Article  MathSciNet  Google Scholar 

  23. L. W. Nordheim (1928) ArticleTitleOn the kinetic methods in the new statistics and its applications in the electron theory of conductivity Proc. Roy. Soc. London Ser. A 119 689

    Google Scholar 

  24. R. K. Pathria, Statistical Mechanics (Pergamon Press, 1972).

  25. W. Rudin (1974) Real and Complex Analysis McGraw-Hill New York

    Google Scholar 

  26. L. Saint-Raymond (2004) ArticleTitleKinetic models for superfluids: a review of mathematical results C.R. Phys. 5 65–75

    Google Scholar 

  27. D. V. Semikov I. I. Tkachev (1995) ArticleTitleKinetics of Bose condensation Phys. Rev. Lett. 74 3093–3097 Occurrence Handle10.1103/PhysRevLett.74.3093 Occurrence Handle10058110

    Article  PubMed  Google Scholar 

  28. D. V. Semikov I. I. Tkachev (1997) ArticleTitleCondensation of Bose in the kinetic regime Phys. Rev. D 55 489–502 Occurrence Handle10.1103/PhysRevD.55.489

    Article  Google Scholar 

  29. G. Toscani C. Villani (1999) ArticleTitleSharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation Commun. Math. Phys. 203 667–706 Occurrence Handle10.1007/s002200050631

    Article  Google Scholar 

  30. C. Truesdell R.G. Muncaster (1980) Fundamentals Maxwell’s Kinetic Theory of a Simple Monoatomic Gas Academic Press New York

    Google Scholar 

  31. E. A. Uehling G.E. Uhlenbeck (1933) ArticleTitleTransport phenomena in Einstein–Bose and Fermi–Dirac gases, I Phys. Rev. 43 552–561 Occurrence Handle10.1103/PhysRev.43.552

    Article  Google Scholar 

  32. C. Villani (2002) A review of mathematical topics in collisional kinetic theory, Handbook of Mathematical Fluid Dynamics North-Holland Amsterdam 71–305

    Google Scholar 

  33. C. Villani (2003) ArticleTitleCercignani’s conjecture is sometimes true and always almost true Commun. Math. Phys. 234 455–490 Occurrence Handle10.1007/s00220-002-0777-1

    Article  Google Scholar 

  34. B. Wennberg (1994) ArticleTitleRegularity in the Boltzmann equation and the Radon transform Commun. Partial Differ. Equ. 19 2057–2074

    Google Scholar 

  35. B. Wennberg (1997) ArticleTitleThe geometry of binary collisions and generalized Radon transforms Arch. Rational Mech. Anal. 139 291–302 Occurrence Handle10.1007/s002050050054

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X. The Boltzmann Equation for Bose–Einstein Particles: Velocity Concentration and Convergence to Equilibrium. J Stat Phys 119, 1027–1067 (2005). https://doi.org/10.1007/s10955-005-3767-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-3767-9

Keywords

Navigation