Skip to main content

Advertisement

Log in

Ionization Constants of Aqueous Glycolic Acid at Temperatures up to 250 C Using Hydrothermal pH Indicators and UV-Visible Spectroscopy

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Chemical equilibrium constants for the ionization of aqueous glycolic acid (hydroxyacetic acid, HOCH2COOH) have been measured at temperatures 25–250 C and pressure p = 4.5 MPa, using UV-visible spectroscopy with a high-pressure flow cell and thermally-stable colorimetric pH indicators. These are the first experimental values for the ionization constant of glycolic acid above 100 C that have been reported. The results have been combined with recently determined values for the standard partial molar volumes of HOCH2COOH(aq) and HOCH2COO(aq) under hydrothermal conditions to develop an “equation of state” that describes the temperature- and pressure-dependence of the equilibrium constant and standard partial molar properties of ionization from 25 to 325 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Bulemela, MSc Thesis, University of Guelph, Guelph, Ontario, Canada (2003).

  2. R. Gilbert and C. Lamarre, J. Chem. Eng. 67, 646 (1989).

    Google Scholar 

  3. A. M. McKay, in Proceedings: 1991 Symposium on Chemistry in High-Temperature Aqueous Solutions (Brigham Young University, Provo, UT), EPRI Report TR-102706, p. B2c-1 (1991).

  4. L. Nims, J. Am. Chem. Soc. 58, 987 (1936).

    Article  Google Scholar 

  5. P. B. Davies and C. B. Monk, Trans. Faraday Soc. 50, 129 (1954).

    Google Scholar 

  6. J. W. Larson and L. G. Hepler, in Solute–Solvent Interactions, J. F. Coetzee and C. D. Ritchie, eds. (Marcel Dekker, New York, 1969), Chap. 1.

    Google Scholar 

  7. H. Høiland and E. Vikingstad, J. Chem. Soc. Faraday Trans. 71, 2007 (1975).

    Article  Google Scholar 

  8. J. J. Christensen, R. M. Izatt, and L. D. Hansen, J. Am. Chem. Soc. 89, 213 (1967).

    Article  Google Scholar 

  9. J. J. Christensen, J. L. Oscarson, and R. M. Izatt, J. Am. Chem. Soc. 90, 5949 (1968).

    Article  Google Scholar 

  10. E. L. Shock, Am. J. Sci. 295, 496 (1995).

    PubMed  Google Scholar 

  11. J. C. Tanger and H. C. Helgeson, Am. J. Sci. 288, 19 (1988).

    Google Scholar 

  12. E. L. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta 52, 2009 (1988).

    Article  Google Scholar 

  13. R. G. F. Clarke, C. M. Collins, J. C. Roberts, L. Trevani, R. J. Bartholomew, and P. R. Tremaine, Geochim. Cosmochim. Acta (in press).

  14. W. Xie, L. Trevani, and P. R. Tremaine, J. Chem. Thermodyn. 36, 127 (2004).

    Article  Google Scholar 

  15. L. N. Trevani, J. C. Roberts, and P. R. Tremaine, J. Solution Chem. 30, 585 (2001).

    Article  Google Scholar 

  16. J. Chlistunoff, K. J. Ziegler, L. Lasdon, and K. P. Johnston, J. Phys. Chem. 103, 1678 (1999).

    Google Scholar 

  17. O. M. Suleimenov and T. M. Seward, Geochim. Cosmochim. Acta 61, 5187 (1997).

    Article  Google Scholar 

  18. E. T. Ryan, T. Xiang, K. P. Johnston, and M. A. Fox, J. Phys. Chem. 101, 1827 (1997).

    Google Scholar 

  19. T. Xiang and K. P. Johnston, J. Phys. Chem. 98, 7915 (1994).

    Article  Google Scholar 

  20. T. Xiang and K. P. Johnston, J. Solution Chem. 26, 13 (1997).

    Article  Google Scholar 

  21. Y. Huh, J.-G. Lee, D. C. McPhail, and K. Kim, J. Solution Chem. 22, 651 (1993).

    Article  Google Scholar 

  22. R. G. Clarke PhD Thesis, Memorial University of Newfoundland, Canada (2000).

  23. W. T. Lindsay, in Proceedings of the 41st International Water Conference (Engineers Society of Western Pennsylvania, Pittsburgh, PA, 1980), p. 284.

  24. D. G. Archer, J. Phys. Chem. Ref. Data 21, 793 (1992).

    Google Scholar 

  25. K. P. Johnston and J. B. Chlistunoff, J. Supercrit. Fluids 12, 155 (1998).

    Article  Google Scholar 

  26. R. E. Mesmer, C. S. Patterson, R. H. Busey, and H. F. Holmes, J. Phys. Chem. 93, 7483 (1989).

    Article  Google Scholar 

  27. P. Wang, J. L. Oscarson, S. E. Gillespie, R. M. Izatt, and H. Cao, J. Solution Chem. 25, 243 (1996).

    Article  Google Scholar 

  28. J. S. Hine, Structural Effects on Equilibria in Organic Chemistry (Wiley-Interscience, New York, 1975).

    Google Scholar 

  29. R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes, J. Solution Chem., 17, 699 (1988).

    Article  Google Scholar 

  30. F. H. Sweeton, R. E. Mesmer, and C. F. Baes, Jr., J. Solution Chem. 3, 191 (1974).

    Article  Google Scholar 

  31. E. U. Franck, Z. Phys. Chem. 8, 107 (1956).

    Google Scholar 

  32. E. U. Franck, Angew. Chem. 73, 309 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Tremaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulemela, E., Trevani, L. & Tremaine, P.R. Ionization Constants of Aqueous Glycolic Acid at Temperatures up to 250 C Using Hydrothermal pH Indicators and UV-Visible Spectroscopy. J Solution Chem 34, 769–788 (2005). https://doi.org/10.1007/s10953-005-5113-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-5113-x

Keywords

Navigation