Skip to main content

Advertisement

Log in

Ionization Constants of DL-2-Aminobutyric Acid and DL-Norvaline Under Hydrothermal Conditions by UV–Visible Spectroscopy

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The first and second ionization constants for the amino acids DL-2-aminobutyric acid (DL-2-aminobutanoic acid) and DL-norvaline (DL-2-aminopentanoic acid) were determined under hydrothermal conditions, from 175 to 275 °C at 10 MPa, using thermally-stable colorimetric pH indicators (acridine, 4-nitrophenol and 2-naphthoic acid). The measurements were carried out by UV–visible spectroscopy using a high-temperature, high-pressure platinum flow cell with sapphire windows, which minimized the effects of thermal decomposition. The results were combined with literature values from titration calorimetry at 25–130 °C to yield an extended van’t Hoff model for the temperature dependence of the ionization constants for the carboxylic acid and ammonium groups, \( K_{\text{a,COOH}} \) and \( K_{{{\text{a,NH}}_{3}^{ + } }} \), over the entire temperature range. The experimental results for the second ionization constant \( K_{{{\text{a,NH}}_{3}^{ + } }} \) at elevated temperatures are consistent with the predictions from the Yezdimer–Sedlbauer–Wood functional group additivity model, but for the first ionization constant \( K_{\text{a,COOH}} \) are not. This suggests that the group contribution parameters for the standard partial molar heat capacity of the carboxylic acid group are in error, or that nearest neighbor interactions between the –COOH and \( - {\text{NH}}_{3}^{ + } \) groups cause a breakdown in the functional group additivity relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kharakoz, D.P.: Volumetric properties of proteins and their analogs in diluted water solutions. 1. Partial volumes of amino acids at 15–55 °C. Biophys. Chem. 34, 115–125 (1989)

    Article  CAS  Google Scholar 

  2. Lyon, S.: Materials science: a natural solution to corrosion? Nature 427, 406–407 (2004)

    Article  CAS  Google Scholar 

  3. Baross, J.A., Deming, J.W.: Growth of ‘black smoker’ bacteria at temperatures of at least 250 °C. Nature 303, 423–426 (1983)

    Article  CAS  Google Scholar 

  4. Crabtree, R.H.: Where smokers rule. Science 276, 222 (1997)

    Article  CAS  Google Scholar 

  5. Hamborg, E.S., Niederer, J.P.M., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K. J. Chem. Eng. Data 52, 2491–2502 (2007)

    Article  CAS  Google Scholar 

  6. Yang, N., Xu, D.-Y., Wei, C.-C., Puxty, G., Yu, H., Maeder, M., Norman, S., Feron, P.: Protonation constants and thermodynamic properties of amino acid salts for CO2 capture at high temperatures. Ind. Eng. Chem. Res. 53, 12848–12855 (2014)

    Article  CAS  Google Scholar 

  7. Cohn, E.J., Edsall, J.T.: Proteins, Amino Acids, and Peptides as Ions and Dipolar Ions. Hafner Publishing Company, New York (1943)

    Google Scholar 

  8. Romero, C.M., Negrete, F.: Effect of temperature on partial molar volumes and viscosities of aqueous solutions of alpha-DL-aminobutyric acid, DL-norvaline and DL-norleucine. Phys. Chem. Liq. 42, 261–267 (2004)

    Article  CAS  Google Scholar 

  9. Millero, F.J., Lo Surdo, A., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)

    Article  CAS  Google Scholar 

  10. Amend, J.P., Helgeson, H.C.: Group additivity equations of state for calculating the standard molal thermodynamic properties of aqueous organic species at elevated temperatures and pressures. Geochim. Cosmochim. Acta 61, 11–46 (1997)

    Article  CAS  Google Scholar 

  11. Yezdimer, E.M., Sedlbauer, J., Wood, R.H.: Predictions of thermodynamic properties at infinite dilution of aqueous organic species at high temperature via functional group additivity. Chem. Geol. 164, 259–280 (2000)

    Article  CAS  Google Scholar 

  12. Tanger, J.C., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard partial molal properties of ions and electrolytes. Am. J. Sci. 288, 19–98 (1988)

    Article  CAS  Google Scholar 

  13. Shock, E.L., Oelkers, E.H., Johnson, J.W., Sverjensky, D.A., Helgeson, H.C.: Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar. J. Chem. Soc. Faraday Trans. I 88, 803–826 (1992)

    Article  CAS  Google Scholar 

  14. Sedlbauer, J., O’connell, J.P., Wood, R.H.: A new equation of state for correlation and prediction of standard molal thermodynamic properties of aqueous species at high temperatures and pressures. Chem. Geol. 163, 43–63 (2000)

    Article  CAS  Google Scholar 

  15. Srivastava, J.P.N., Srivastava, M.N.: Stability constants and thermodynamic functions of some rare earth metal ion chelates of DL-α-aminobutyric acid. J. Inorg. Nucl. Chem. 40, 2076–2078 (1978)

    Article  CAS  Google Scholar 

  16. Smith, P.K., Taylor, A.C., Smith, E.R.B.: Thermodynamic properties of solutions of amino acids and related substances. III. The ionization of aliphatic amino acids in aqueous solution from one to fifty degrees. J. Biol. Chem. 122, 109–123 (1937)

    CAS  Google Scholar 

  17. Israeli, M., Pettit, L.D.: Complex formation between unsaturated α-aminoacids and silver(I) and some divalent transition metal ions. J. Inorg. Nucl. Chem. 37, 999–1003 (1975)

    Article  CAS  Google Scholar 

  18. Gergely, A., Sóvágó, I.: \(\text{Log}\,\beta, \Delta{H}\,\text{and}\, \Delta{S}\) values of mixed complexes of Cu(II) with histamine and some aliphatic aminoacids. J. Inorg. Nucl. Chem. 35, 4355–4365 (1973)

    Article  CAS  Google Scholar 

  19. Gergely, A., Sóvágó, I., Nagypaál, I., Király, R.: Equilibrium relations of alpha-aminoacid mixed complexes of transition metal ions. Inorg. Chim. Acta 6, 435–439 (1972)

    Article  CAS  Google Scholar 

  20. Datta, S.P., Grzybowski, A.K.: The second acid dissociations of glycine, sarcosine and N-dimethylglycine. Part 1. -Thermodynamic dissociation constants. Trans. Faraday Soc. 54, 1179–1187 (1958)

    Article  CAS  Google Scholar 

  21. Datta, S.P., Grzybowski, A.K.: The second acid dissociations of glycine, sarcosine and N-dimethylglycine. Part 2. -Thermodynamic quantities. Trans. Faraday Soc. 54, 1188–1194 (1958)

    Article  CAS  Google Scholar 

  22. Anderson, K.P., Newell, D.A., Izatt, R.M.: Formation constant, enthalpy, and entropy values for the association of alanine with H and Cu +2  at 10, 25, and 40 °. Inorg. Chem. 5, 62–65 (1966)

    Article  CAS  Google Scholar 

  23. Gillespie, S.E., Oscarson, J.L., Izatt, R.M., Wang, P., Renuncio, J.A.R., Pando, C.: Thermodynamic quantities for the protonation of amino acid amino groups from 323.15 to 398.15 K. J. Solution Chem. 24, 1219–1247 (1995)

    Article  CAS  Google Scholar 

  24. Wang, P., Oscarson, J.L., Gillespie, S.E., Izatt, R.M., Cao, H.: Thermodynamics of protonation of amino acid carboxylate groups from 50 to 125 °C. J. Solution Chem. 25, 243–266 (1996)

    Article  CAS  Google Scholar 

  25. Clarke, R.G., Collins, C.M., Roberts, J.C., Trevani, L.N., Bartholomew, R.J., Tremaine, P.R.: Ionization constants of aqueous amino acids at temperatures up to 250 °C using hydrothermal pH indicators and UV-visible spectroscopy: glycine, alpha-alanine, and proline. Geochim. Cosmochim. Acta 69, 3029–3043 (2005)

    Article  CAS  Google Scholar 

  26. Ryan, E.T., Xiang, T., Johnston, K.P., Fox, M.A.: Absorption and fluorescence studies of acridine in subcritical and supercritical water. J. Phys. Chem. A 101, 1827–1835 (1997)

    Article  CAS  Google Scholar 

  27. Xiang, T., Johnston, K.P.: Acid–base behavior of organic compounds in supercritical water. J. Phys. Chem. 98, 7915–7922 (1994)

    Article  CAS  Google Scholar 

  28. Xiang, T., Johnston, K.P.: Acid–base behavior in supercritical water: β-Naphthoic acid-ammonia equilibrium. J. Solution Chem. 26, 13–30 (1997)

    CAS  Google Scholar 

  29. Hakin, A.W., Daisley, D.C., Delgado, L., Liu, J.L., Marriott, R.A., Marty, J.L., Tompkins, G.: Volumetric properties of glycine in water at elevated temperatures and pressures measured with a new optically driven vibrating-tube densimeter. J. Chem. Thermodyn. 30, 583–606 (1998)

    Article  CAS  Google Scholar 

  30. Clarke, R.G., Tremaine, P.R.: Amino acids under hydrothermal conditions: apparent molar volumes of α-alanine, β-alanine and proline at temperatures from 298 to 523 K and pressures up to 20.0 MPa. J. Phys. Chem. B 103, 5131–5144 (1999)

    Article  CAS  Google Scholar 

  31. Clarke, R.G., Hnedkovský, L., Tremaine, P.R., Majer, V.: Amino acids under hydrothermal conditions: apparent molar heat capacities of aqueous β-Alanine, β-alanine, glycine, and proline at temperatures from 298 to 500 K and pressures up to 30.0 MPa. J. Phys. Chem. B 104, 11781–11793 (2000)

    Article  CAS  Google Scholar 

  32. Bulemela, E., Tremaine, P.R.: Standard partial molar volumes of some aqueous alkanolamines and alkoxyamines at temperatures up to 325 °C: functional group additivity in polar organic solutes under hydrothermal conditions. J. Phys. Chem. B 112, 5626–5645 (2008)

    Article  CAS  Google Scholar 

  33. Bulemela, E., Tremaine, P.R.: D2O isotope effects on the ionization constant of b-naphthol and boric acid at temperatures from 225 to 300 °C using UV-visible spectroscopy. J. Solution Chem. 38, 805–826 (2009)

    Article  CAS  Google Scholar 

  34. Trevani, L.N., Roberts, J.C., Tremaine, P.R.: Copper(II)–ammonia complexation equilibria in aqueous solutions at temperatures from 30 to 250 °C by visible spectroscopy. J. Solution Chem. 30, 585–622 (2001)

    Article  CAS  Google Scholar 

  35. Minubayeva, Z., Suleimenov, O.M., Seward, T.M.: Acridinium ion ionization at elevated temperatures and pressures to 200 °C and 2000 bar. J. Solution Chem. 37, 291–305 (2008)

    Article  CAS  Google Scholar 

  36. Ehlerova, J., Trevani, L.N., Sedlbauer, J., Tremaine, P.R.: Spectrophotometric determination of the ionization constants of aqueous nitrophenols at temperatures up to 225 °C. J. Solution Chem. 37, 857–874 (2008)

    Article  CAS  Google Scholar 

  37. Holmes, H.F., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures VII. MgSO4 and NiSO4. J. Chem. Thermodyn. 15, 709–719 (1983)

    Article  CAS  Google Scholar 

  38. Christensen, J.J., Oscarson, J.L., Izatt, R.M.: Thermodynamics of proton ionization in dilute aqueous solution. X. ∆G° (pK), ∆H°, and ∆S° values for proton ionization from several monosubstituted carboxylic acids at 10, 25, and 40°. J. Am. Chem. Soc. 90, 5949–5953 (1968)

    Article  CAS  Google Scholar 

  39. Anderson, G.M., Crerar, D.A.: Thermodynamics in Geochemistry: The Equilibrium Model. Oxford University Press, New York (1993)

    Google Scholar 

  40. Mesmer, R.E., Marshall, W.L., Palmer, D.A., Simonson, J.M., Holmes, H.F.: Thermodynamics of aqueous association and ionization reactions at high-temperatures and pressures. J. Solution Chem. 17, 699–718 (1988)

    Article  CAS  Google Scholar 

  41. Sweeton, F.H., Mesmer, R.E., Baes Jr., C.F.: Acidity measurements at elevated temperatures. VII. Dissociation of water. J. Solution Chem. 3, 191–214 (1974)

    Article  CAS  Google Scholar 

  42. Kay, R.L.: The current state of our understanding of ionic mobilities. Pure Appl. Chem. 63, TBD, 1393–1399 (1991)

  43. Tremaine, P., Arcis, H.: Solution calorimetry under hydrothermal conditions. Rev. Mineral. Geochem. 76, 219–263 (2013)

    Article  CAS  Google Scholar 

  44. Fawcett, W.R.: Liquids, solutions, and interfaces: In: Classical Macroscopic Descriptions to Modern Microscopic Details. Oxford University Press, New York (2004)

  45. Tremaine, P.R., Zhang, K., Bénézeth, P., Xiao, C.: In: Palmer, D.A., Fernandez-Prini, R., Harvey, A.H. (eds.) Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam and Aqueous Solutions, Chap. 13. Academic Press, Amsterdam (2004)

  46. Hakin, A.W., Duke, M.M., Klassen, S.A., McKay, R.M., Preuss, K.E.: Apparent molar heat capacities and volumes of some aqueous solutions of aliphatic amino acids at 288.15, 298.15, 313.15, 328.15 K. Can. J. Chem. 72, 362–368 (1994)

    Article  CAS  Google Scholar 

  47. Domalski, E.S.: Heats of combustion and formation of organic compounds containing the elements C, H, N, O, P and S. J. Phys. Chem. Ref. Data 1, 221–277 (1972)

    Article  CAS  Google Scholar 

  48. Hakin, A.W., Liu, J.L.: The calorimetric and volumetric properties of selected α-amino acids and α, ω-amino acids in water at T = (288.15, 298.15, 313.15, and 328.15) K and p = 0.1 MPa. J. Solution Chem. 35, 1157–1171 (2006)

    Article  CAS  Google Scholar 

  49. Huffman, H.M., Fox, S.W., Ellis, E.L.: Thermal data. VII. The heats of combustion of seven amino acids. J. Am. Chem. Soc. 59, 2144–2150 (1937)

    Article  CAS  Google Scholar 

  50. Huffman, H.M., Ellis, E.L., Fox, S.W.: Thermal data. VI. The heats of combustion and free energies of seven organic compounds containing nitrogen. J. Am. Chem. Soc. 58, 1728–1733 (1936)

    Article  CAS  Google Scholar 

  51. Briggs, A.G., Tickle, P., Wilson, J.M.: Acid–base equilibria of some naphthoic acids, studied spectrophotometrically. Spectrochim. Acta, Part A 26, 1399–1402 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science and Engineering Research Council of Canada (NSERC), and by the “Apoyo a Doctorados Nacionales 2004” program from Colciencias, which provided a Ph.D. travel scholarship to D. E. Nieto Roca. We are grateful to Dr. Liliana Trevani and Dr. Jenny Cox who provided technical advice, scientific input and encouragement. We are also grateful to Mr. Ian Renaud and Mr. Case Gielen of the electronics shop and machine shop in the College of Physical and Engineering Science at the University of Guelph for their very considerable expertise in constructing and maintaining the UV–visible flow cell system. The functional group additivity calculations were carried out by Prof. Dr. Josef Sedlbauer at the University of Liberec in the Czech Republic, who also provided insightful advice and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Tremaine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1395 kb)

Appendix: Ionization Constant for 2-Naphthoic acid

Appendix: Ionization Constant for 2-Naphthoic acid

As stated in the text, the temperature dependence of the ionization constant of 2-naphthoic acid was recalculated. Table 8 shows the results for the ionization constant of DL-2-aminobutyric acid at 200 °C obtained in this study with the two indicators. The value obtained with 4-nitrophenol was used as the true value for the constant at this temperature. The new ionization constant for 2-naphthoic acid was found by rearranging Eq. 21 to

$$ K_{\text{HInd}} = K_{{{\text{a,NH}}_{ 3}^{ + } }} \frac{{m_{{{\text{HA}}^{ \pm } }} }}{{m_{{{\text{A}}^{ - } }} }} {\cdot} \frac{{m_{\text{Ind}} }}{{m_{\text{HInd}} }} = \frac{{K_{{{\text{a,NH}}_{ 3}^{ + } }} }}{{\left( {\frac{{m_{{{\text{A}}^{ - } }} }}{{m_{{{\text{HA}}^{{{ \pm }}} }} }}} \right)\left( {\frac{{m_{\text{HInd}} }}{{m_{\text{Ind}} }}} \right)}} $$
(A1)

with the values of indicator and buffer ratios obtained for the spectra of 2-naphthoic acid at 200 °C. These results are listed in Table 12.

Table 12 Experimental values of 2-naphthoic acid, \( {\text{p}}K_{{ 2 {\text{ - NaphCOOH}}}} \), at \( \left( {200 \pm 0.1} \right) \, ^\circ {\text{C}} \)

The extended van’t Hoff model was used to establish the temperature dependence of \( K_{{ 2 {\text{ - NaphCOOH}}}} \). As noted before, this model works well with isocoulombic reactions, where the assumption of small and constant \( \Delta_{\text{r}} C_{p}^{\text{o}} \) is valid. For this reason, the reaction for the ionization of 2-naphthoic acid (Eq. 11) was rewritten as

$$ 2{-} {\text{NaphCOOH}} + {\text{OH}}^{ - } \rightleftharpoons 2 {-} {\text{NaphCOO}}^{ - } + {\text{H}}_{2} {\text{O}} $$
(A2)

where

$$ K_{\text{OH,2 - NaphCOOH}} = \frac{{K_{{ 2 {\text{ - NaphCOOH}}}} }}{{K_{\text{w}} }} = \frac{{m_{\text{Ind}} }}{{m_{\text{HInd}} {\cdot} m_{{{\text{OH}}^{ - } }} }} . $$
(A3)

Results from literature for \( K_{{ 2 {\text{ - NaphCOOH}}}} \) from Briggs et al. [51] and our result for 200 °C were used to calculate \( K_{\text{OH,NaphCOOH}} \), along with data for water from Sweeton et al. [41]. Equation 29 was then fitted to \( K_{\text{OH,NaphCOOH}} \), using \( \Delta_{\text{r}} H_{\text{NaphCOOH}}^{\text{o}} \) and \( \Delta_{\text{r}} H_{\text{W}}^{\text{o}} \) at 25 °C from the same sources, obtaining a value for \( \Delta_{\text{r}} C_{{p\;{\text{NaphCOOH}}}}^{\text{o}} \) of \( - 306.3 \pm 7.3{\text{ J}} {\cdot} {\text{mol}}^{ - 1} {\cdot} {\text{K}}^{ - 1} \). The results from the fitting can be seen in Fig. 12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieto Roca, D.E., Romero, C.M. & Tremaine, P.R. Ionization Constants of DL-2-Aminobutyric Acid and DL-Norvaline Under Hydrothermal Conditions by UV–Visible Spectroscopy. J Solution Chem 46, 388–423 (2017). https://doi.org/10.1007/s10953-017-0569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0569-z

Keywords

Navigation