Skip to main content
Log in

Acidity measurements at elevated temperatures. VII. Dissociation of water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The self-dissociation of water has been studied over the temperature range from 0 to 300°C and in KCl media from 0.02m to 2.7m. Also, isothermal pressure coefficients of the dissociation quotients have been obtained in these same media up to 250°C. A potentiometric method employing a hydrogen electrode concentration cell with flowing solutions was employed. The estimated accuracy of logQ w values up to 250°C is 0.02 log units and at 300°C is 0.04 log units. Smoothing functions have been found which fit these data along with the precise potentiometric data of Harned and co-workers at low temperatures, the existing calorimetric data up to 55°C and the recent conductimetric measurements of pure water up to 271°C by Bignoldet al., within about 1.5 times the estimated errors. Thermodynamic quantities for the dissociation reaction have been tabulated for rounded values of temperature and ionic strength at the saturation pressure of water. The isothermal pressure coefficients of log Qw varies approximately linearly with the square root of the ionic strength. This and the dependence of logK w on the density of the water is consistent with the assumption that the molal volumes of aqueous ions vary linearly with the compressibility coefficient of water. The heat for the dissociation reaction at infinite dilution is also shown to be strongly dependent on density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. L. Clever,J. Chem. Educ. 45(4), 231 (1968).

    Google Scholar 

  2. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed., (Reinhold Publishing Corp., New York), pp. 634–649, 752–754.

  3. A. A. Noyes, Y. Kato, and R. B. Sosman, Publ. Carnegie Inst.63, 193, 193 (1907);J. Am. Chem. Soc. 32, 159 (1910);Z. Physik. Chem. 73, 20 (1910).

    Google Scholar 

  4. Th. Ackermann,Z. Electrochem. 62, 411 (1958).

    Google Scholar 

  5. J. V. Dobson and H. R. Thirsk,Electrochim. Acta 16, 315 (1971).

    Google Scholar 

  6. V. D. Perkovets and P. A. Kryukov,Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser, Khim. Nauk, No. 3, 9–12 (1969). (Trans. UDC 546.212+[541.124.7:541.036]).

    Google Scholar 

  7. R. S. Greeley, W. T. Smith, Jr., R. W. Stoughton, and M. H. Lietzke,J. Phys. Chem. 64, 652 (1960).

    Google Scholar 

  8. J. R. Fisher and H. L. Barnes,J. Phys. Chem. 76, 90 (1972).

    Google Scholar 

  9. G. J. Bignold, A. D. Brewer, and B. Hearn,Trans. Faraday Soc. 67, Part 8, 2419 (1971).

    Google Scholar 

  10. E. U. Franck,Z. Physik. Chem. (Frankfurt) 8, 92, 107, 192 (1956);Angew. Chem. 73, 309 (1961).

    Google Scholar 

  11. W. B. Holzapfel,J. Chem. Phys. 50, 4424 (1969).

    Google Scholar 

  12. A. S. Quist,J. Phys. Chem. 74, 3396 (1970).

    Google Scholar 

  13. I. Grenthe, H. Ots, and O. Ginstrup,Acta Chem. Scand. 24, 1067 (1970).

    Google Scholar 

  14. C. S. Leung and E. Grunwald,J. Phys. Chem. 74, 687 (1970).

    Google Scholar 

  15. C. E. Vanderzee and J. A. Swanson,J. Phys. Chem. 67, 2608 (1963); J. D. Hale, R. M. Izatt, and J. J. Christensen,J. Phys. Chem. 67, 2605 (1963).

    Google Scholar 

  16. W. L. Marshall and A. S. Quist,Proc. Nat. Acad. Sci. U.S. 58, 901 (1967); A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 1536, 1545 (1968); W. L. Marshall,Rec. Chem. Prog. 32(2), 61 (1969).

    Google Scholar 

  17. F. J. Millero, The Partial Molal Volumes of Electrolytes in Aqueous Solution, inWater and Aqueous Solutions, R. A. Horne, ed. (Wiley-Interscience, New York, 1972), pp. 519–595.

    Google Scholar 

  18. A. J. Ellis,J. Chem. Soc. (A), 1579 (1966).

  19. R. E. Mesmer, C. F. Baes, Jr., and F. H. Sweeton,J. Phys. Chem. 74, 1937 (1970).

    Google Scholar 

  20. F. H. Sweeton, R. E. Mesmer, and C. F. Baes, Jr.,J. Phys. E: Sci. Instr. 6, 165 (1973).

    Google Scholar 

  21. H. S. Harned and W. J. Hamer,J. Am. Chem. Soc. 55, 2194 (1933).

    Google Scholar 

  22. W. R. Busing and H. A. Levy, A General Fortran Least Squares Program, Oak Ridge National Laboratory Report. ORNL-TM-271, August 1962.

  23. A. W. Gardner and E. Glueckauf,Proc. Roy. Soc. (A) 313, 131 (1969), Eqs. (4)-(7), (12a), and (13a).

    Google Scholar 

  24. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd rev. ed. (Butterworths, London, 1968), pp. 238–252.

    Google Scholar 

  25. E. Glueckauf,Proc. Roy. Soc. (A),310, 449 (1969).

    Google Scholar 

  26. W. T. Lindsay, Jr., and Chia-tsun Liu,J. Phys. Chem. 75, 3723 (1971).

    Google Scholar 

  27. G. S. Kell and E. Whalley,Phil. Trans. Roy. Soc. (A) 258, 565 (1965).

    Google Scholar 

  28. C. W. Burnham, J. R. Holloway, and N. F. Davis,Am. J. Sci. 267A, 70 (1969).

    Google Scholar 

  29. 1967 Steam Tables (St. Martin's Press, 1967), pp. 115–117.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweeton, F.H., Mesmer, R.E. & Baes, C.F. Acidity measurements at elevated temperatures. VII. Dissociation of water. J Solution Chem 3, 191–214 (1974). https://doi.org/10.1007/BF00645633

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00645633

Key Words

Navigation