Skip to main content
Log in

Purification and Partial Characterization of a Novel β-1,3-Endoglucanase from Streptomyces rutgersensis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

A β-1,3-endoglucanase produced by Streptomyces rutgersensis was purified to a homogeneity by the fractional precipitation with ammonium sulfate, ion exchange chromatography on Q-Sepharose and hydrophobic chromatography on Butyl Sepharose. A typical procedure provided 11.74-fold purification with 12.53 % yield. SDS-PAGE of the purified protein showed one protein band. The exact molecular mass of the enzyme obtained by mass spectrometry was 41.25 kDa; the isoelectric point was between pH 4.2–4.4. The optimal β-glucanase catalytic activity was at pH 7 and 50 °C. An enzyme was only active toward glucose polymers containing β-1,3 linkages and hydrolyzed Saccharomyces cerevisiae cell wall β-glucan in an endo-like way: reaction products were different molecular size β-glucans, which were larger than glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AU:

Unit of enzyme activity

ESI:

Electrospray ionization

Km :

Michaelis–Menten constant

MS:

Mass spectrometry

pI:

Isoelectric point

QTOF:

Quadrupole time-of-flight mass spectrometer

RPM:

Revolutions per minute

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SEC:

Size-exclusion chromatography

TLC:

Thin layer chromatography

Vmax :

Maximum velocity

References

  1. Aguilar-Uscanga B, François JM (2003) Lett Appl Microbiol 37:268–274

    Article  CAS  Google Scholar 

  2. Bacic A, Fincher GB, Stone BA (2009) Chemistry, biochemistry, and biology of 1–3 beta glucans and related polysaccharides. Academic Press, Burlington

    Google Scholar 

  3. Balasubramanian V, Vashisht D, Cletus J, Sakthive N (2012) Biotechnol Lett 34(11):1983–1990

    Article  CAS  Google Scholar 

  4. Beyer M, Diekmann H (1984) Appl Microbiol Biotechnol 20(3):207–212

    Article  CAS  Google Scholar 

  5. Chan GC, Chan WC, Man-Yuen SDD (2009) J Hematol Oncol 2:25

    Article  Google Scholar 

  6. Chen J, Seviour R (2007) Mycol Res 3:635–652

    Article  Google Scholar 

  7. De Marco JL, Felix CR (2007) Braz Arch Biol Technol 50:21–29

    Article  Google Scholar 

  8. Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ (2007) Mol Biol Evol 24(4):1045–1055

    Article  CAS  Google Scholar 

  9. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  10. Hong TY, Cheng CW, Huang JW, Meng M (2002) Microbiology 148:1151–1159

    CAS  Google Scholar 

  11. Huber CN, Scobell H, Tai H (1966) Cereal Chem 43:342–346

    CAS  Google Scholar 

  12. Hunter JKW, Gault RA, Berner MD (2002) Lett Appl Microbiol 35:267–271

    Article  CAS  Google Scholar 

  13. Javmen A, Grigiškis S, Gliebutė R (2012) Biologija 58(2):51–59

    Article  CAS  Google Scholar 

  14. Krah M, Misselwitz R, Politz O, Thomsen KK, Welfle H, Borriss R (1998) Eur J Biochem 257:101–111

    Article  CAS  Google Scholar 

  15. Li H, Chen J, Li A, Li DC (2007) World J Microbiol Biotechnol 23:1297–1303

    Article  CAS  Google Scholar 

  16. Lowry OH, Rosebrough N, Farr AL, Randall RJ (1951) J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  17. Martin K, McDougall BM, McIlroy S, Jayus JC, Seviour RJ (2007) FEMS Microbiol Rev 31:168–192

    Article  CAS  Google Scholar 

  18. Miller GL (1959) Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  19. Noroha FE, Ulhoa CJ (2000) FEMS Microbiol Lett 183:119–123

    Google Scholar 

  20. Novak M, Vetvicka V (2008) J Immunotoxicol 5:47–57

    Article  CAS  Google Scholar 

  21. Pang Z, Otaka K, Suzuki Y, Goto K, Ohnishi M (2004) J Biol Macromol 4:57–66

    CAS  Google Scholar 

  22. Park JK, Kim JD, Park YI, Kim SK (2012) Carbohydr Polym 87(2):1641–1648

    Article  CAS  Google Scholar 

  23. Pelizon AC, Kaneno R, Soares AMVC, Meira DA, Sartori A (2005) Physiol Res 54:557–564

    CAS  Google Scholar 

  24. Petravić-Tominac V, Zechner-Krpan V, Grba S, Panjkota-Krbavčić I, Vidović L (2010) Agric Conspec Sci 75:149–158

    Google Scholar 

  25. Rop O, Mlcek J, Jurikova T (2009) Nutr Rev 67:624–631

    Article  Google Scholar 

  26. Shokri H, Asadi F, Khosravi AR (2008) Nat Prod Res 22:414–421

    Article  CAS  Google Scholar 

  27. Sun L, Gurnon JR, Adams BJ, Graves MV, Van Etten LJ (2000) Virology 276:27–36

    Article  CAS  Google Scholar 

  28. Tanabe YY, Oda MM (2011) Prot Proteomics 1814(12):7

    Google Scholar 

  29. Vetvicka V (2011) World J Clin Oncol 2:115–119

    Article  Google Scholar 

  30. Vieira FA, da Cunha M, Klein DE, Carvalho AO, Gomes VM (2006) Braz Arch Biol Technol 49(6):881–888

    Article  CAS  Google Scholar 

  31. Yi SY, Hwang BK (1997) Mol Cells 143:1701–1708

    Google Scholar 

  32. Zhou L, Zhu YT, Chen GJ, Liu WF (2011) Microbiol China 38:839–846

    CAS  Google Scholar 

  33. Zverlov VV, Volkov I, Velikodvorskaya TV, Schwarz W (1997) Microbiology 143:1701–1708

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Javmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javmen, A., Grigiškis, S., Rudenkov, M. et al. Purification and Partial Characterization of a Novel β-1,3-Endoglucanase from Streptomyces rutgersensis . Protein J 32, 411–417 (2013). https://doi.org/10.1007/s10930-013-9500-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-013-9500-7

Keywords

Navigation